💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码及文献
💥1 概述
基于SWT_DCT_SF的红外与可见光图像融合方法是一种通过结合离散稳态小波变换(DSWT)、离散余弦变换(DCT)和局部空间频率(LSF)来混合融合红外和可见光图像的方法。
为了提高红外和视觉图像融合的性能,并提供更好的视觉效果,本文提出了一种新的融合方法。该方法首先利用DSWT将源图像的重要特征分解为一系列不同层次和空间频率的子图像。这样做的目的是为了捕捉图像的细节和结构信息。接下来,利用DCT根据不同频率的能量分离子图像的重要细节。DCT能够有效地提取图像的频域特征,从而使得融合后的图像更加清晰和自然。最后,应用LSF增强DCT系数的区域特征,以帮助图像特征的提取和融合。LSF可以提供更多的空间信息,从而提高融合效果。
为了评估所提方法的有效性,我们使用了一些常用的图像融合方法和评价指标进行了实验。实验结果表明,所提方法能够达到较好的融合效果,比其他常规图像融合方法更有效。通过将红外和可见光图像的特征进行合理的融合,我们可以获得更全面和准确的图像信息,从而提高图像的识别和分析能力。这对于许多应用领域,如军事、安防和医学图像处理等具有重要的意义。
总之,基于SWT_DCT_SF的红外与可见光图像融合方法是一种有效的融合方法,能够提高红外和可见光图像的融合效果,并提供更好的视觉效果。这种方法可以应用于各种图像处理领域,为相关应用提供更全面和准确的图像信息。
📚2 运行结果
部分代码:
function imf=swt_dct2(M1,M2)[m,n]=size(M1);
bs=4;
for i=1:bs:mfor j=1:bs:ncb1 = M1(i:i+bs-1,j:j+bs-1);cb2 = M2(i:i+bs-1,j:j+bs-1);CB1=dct2(cb1);CB2=dct2(cb2);CBF= fusionrule(CB1,CB2,CB1,CB2);cbf=idct2(CBF);imf(i:i+bs-1,j:j+bs-1)=cbf;im1(i:i+bs-1,j:j+bs-1)=CB1;im2(i:i+bs-1,j:j+bs-1)=CB2;im3(i:i+bs-1,j:j+bs-1)=CBF;end
endfigure,imshow(M1,[]);
figure,imshow(M2,[]);
figure,imshow(imf,[]);figure,imshow(im1,[]);figure(1231);imagesc(M1)axis offaxis image
figure,imshow(im2,[]);figure(1232);imagesc(M2)axis offaxis image
figure,imshow(im3,[]);figure(1233);imagesc(imf)axis offaxis image
end
function imf=swt_dct2(M1,M2)
[m,n]=size(M1);
bs=4;
for i=1:bs:m
for j=1:bs:n
cb1 = M1(i:i+bs-1,j:j+bs-1);
cb2 = M2(i:i+bs-1,j:j+bs-1);
CB1=dct2(cb1);
CB2=dct2(cb2);
CBF= fusionrule(CB1,CB2,CB1,CB2);
cbf=idct2(CBF);
imf(i:i+bs-1,j:j+bs-1)=cbf;
im1(i:i+bs-1,j:j+bs-1)=CB1;
im2(i:i+bs-1,j:j+bs-1)=CB2;
im3(i:i+bs-1,j:j+bs-1)=CBF;
end
end
figure,imshow(M1,[]);
figure,imshow(M2,[]);
figure,imshow(imf,[]);
figure,imshow(im1,[]);
figure(1231);
imagesc(M1)
axis off
axis image
figure,imshow(im2,[]);
figure(1232);
imagesc(M2)
axis off
axis image
figure,imshow(im3,[]);
figure(1233);
imagesc(imf)
axis off
axis image
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。