1 论文笔记:Efficient Trajectory Similarity Computation with ContrastiveLearning

2022CIKM

1 intro

1.1 背景

  • 轨迹相似度计算是轨迹分析任务(相似子轨迹搜索、轨迹预测和轨迹聚类)最基础的组件之一
  • 现有的关于轨迹相似度计算的研究主要可以分为两大类:
    • 传统方法
      • DTW、EDR、EDwP等
      • 二次计算复杂度O(n^2)
      • 缺乏稳健性
        • 会受到非均匀采样、噪点的影响
    • 基于学习的方法
      • 旨在减少计算复杂度和/或提高稳健性
      • 根据它们的目的将它们分为两个方向
        • 神经逼近方法
          • 利用强大的神经网络在隐藏空间中逼近任何现有的轨迹测量
          • 训练一个神经网络g以将轨迹编码到隐藏空间
          • 最小化估计的相似性和基准之间的差异
            • |D_H(g(T_i),g(T_j))-D(T_i,T_j)|
              • Dh​是隐藏空间中的差异(相似性)测量(例如,欧几里得距离)
          • 不需要两个轨迹之间的点对齐,因此计算复杂度在轨迹的长度上是线性的
          • 由于要逼近的测量而遭受 稳健性问题
        • auto-encoder 方法
          • 无监督地学习映射函
          • 为了提高潜在表示相对于低质量的鲁棒性,这些方法采用了不同的策略
            • t2vec利用去噪顺序自编码器
            • Trembr整合了路网信息并设计了多个任务
          • 在训练编码模型方面 效率低下
            • 这是由于顺序自编码器架构的固有限制,其中解码过程和逐步重构非常耗时
            • t2vec 在 Tesla K40 GPU 上训练 2千万轨迹的一个epoch大约需要 14 小时,平均每个轨迹有 60 个样本
          • 这些方法试图学习相同基础路线轨迹(高采样轨迹)的一致表示以解决质量问题
            • 换句话说,即使来自相同基础路线的轨迹具有不同的采样率和噪点,表示应该是相同的
            • 论文认为,由于他们的目标是重构轨迹而不是基础路线,顺序自编码器无法实现这一目标
            • ——>对于顺序自编码器来说, 获得一致的表示是非常困难的

1.2 论文思路

  • 提出了一种基于对比学习的轨迹相似性计算的新型鲁棒模型(CL-TSim)
    • 遵循常见的范例,首先学习轨迹的表示,然后使用欧几里得距离在编码空间中计算轨迹之间的相似性
  • 对轨迹 Ti 进行预处理,以获得增强轨迹 Tj
    • 其中使用下采样和扭曲增强来适应轨迹特征,包括非均匀采样率和噪点
  • 同时将它们编码到隐藏空间并最大化它们之间的一致性

  • 遵循对比学习架构,CL-TSim 只包含一个编码器和一个投影器
    • 编码器用于编码原始轨迹以学习它们的表示
    • 投影器用于将表示映射到损失函数的度量空间
    • 与顺序自编码器相比,它不需要解码器和逐步重构,这可以显著减少训练时间。

2 Preliminary

2.1 基础路线

  • 由移动对象生成的连续空间曲线
  • 只存在于理论中,因为配备了 GPS 的设备无法连续记录时空位置

2.2  轨迹

  • 移动对象的轨迹,记为 T
  • 从基础路线中采样的一系列有限点的序列,形式为 𝑇=((𝑥1,𝑦1,𝑡1),(𝑥2,𝑦2,𝑡2),...,(𝑥𝑛,𝑦𝑛,𝑡𝑛))
  • xi,yi 代表在时间戳 𝑡𝑖 的采样位置的经度和纬度信息
  • 受采样方法和设备的影响,轨迹通常基于不同的采样率生成,并包含有噪点

2.3 问题定义

给定一组轨迹,我们的问题是设计一个高效且鲁棒的模型,以计算轨迹之间的相似性,目标如下:

1)高效的表示学习:有效地为每个轨迹 T 学习一个表示 t,其中 t 可以反映轨迹 T 的基础路线,用于计算轨迹相似性;

 2)模型的鲁棒性:换句话说,两个任意轨迹Ti 和Tj 之间的相似性是一致的,不受非均匀采样率和噪点的影响

3 模型

4 实验

4.1 数据

4.2 评估方法

4.2.1 自相似性

  • 给定一组轨迹,随机选择 m 条轨迹和 n 条轨迹,分别记为 Q 和 D
    • 对于 Q 中的每条轨迹,通过交替从中取点来创建两个子轨迹(称为双胞胎轨迹),并将第一个子轨迹加入 Q1,而另一个加入 Q2
    • 对于 Q1 中的每条轨迹,称为查询轨迹,我们在Q2∪D 中检索最相似的轨迹,称为数据库轨迹
    • 显然,Q2 中的轨迹应该排在 D 之前,因为它们是由与 Q1 中相同的轨迹生成的
  • 假设 Ti 是 Q1 中的一个查询轨迹,而 Tj 是 Q2 中的相应双胞胎轨迹
    • 计算 Ti 与 Q2∪D1 之间轨迹的相似性,根据相似性对轨迹进行排序,并记 Tj 的排名为 ri
  • 基于此,采用两个广泛使用的度量标准,即精确度 P 和平均排名 MR

当 ri 等于 0 时,pi 等于 1;否则,pi 等于 0。(只有查询数据集里面Tj是最相似的,才会是1)

更大的 P 或更小的 MR 值意味着更好的自相似性性能。

4.2.2 交叉相似性

一个好的相似性度量应该能够保持两个不同轨迹之间的相似性,而不考虑数据采样策略

交叉距离偏差(CDD)来评估性能

Ta 和 Tb 是具有原始率的两个不同的轨迹,Ta′(rd) 是通过以 d 的速率随机丢弃(或扭曲)样本点获得的Ta 的变体,而 Tb′(rd) 是以与 Ta′(rd) 相同的方式获得的 Tb 的变体。

较小的 CDD 值表明评估的相似性(即,距离)更接近真实值。

4.3 结果

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/145532.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

紫光同创FPGA图像视频采集系统,基于OV7725实现,提供工程源码和技术支持

目录 1、前言免责声明 2、设计思路框架视频源选择OV7725摄像头配置及采集动态彩条HDMA图像缓存输入输出视频HDMA缓冲FIFOHDMA控制模块HDMI输出 3、PDS工程详解4、上板调试验证并演示准备工作静态演示动态演示 5、福利:工程源码获取 紫光同创FPGA图像视频采集系统&am…

Linux 网络编程

套接字(Socket): 通过网络实现跨机通信 作用:一种文件描述符传输层的文件描述符 整个编程中,需要着重注意htonl/htons、ntohl/ntohs、inet_addr等 TCP的C/S实现 循环服务器模型 TCP服务器实现过程 1.创建套接字&a…

Docker安装MS SQL Server并使用Navicat远程连接

思维导航 MS SQL Server简介 Microsoft SQL Server(简称SQL Server)是由微软公司开发的关系数据库管理系统,它是一个功能强大、性能卓越的企业级数据库平台,用于存储和处理大型数据集、支持高效查询和分析等操作。SQL Server 支持广泛的应用程序开发接口(API),包括 T-S…

大规模语言模型--中文 LLaMA和Alpaca

中文LLaMA 尽管 LLaMA 和 Alpaca 在 NLP 领域取得了重大进展, 它们在处理中文语言任务时, 仍存在一些局限性。这 些原始模型在字典中仅包含数百个中文 tokens (可以理解为单词),导致编码和解码中文文本的效率受到了很大 影响。 之前已经对…

.net 温故知新:Asp.Net Core WebAPI 入门使用及介绍

在Asp.Net Core 上面由于现在前后端分离已经是趋势,所以asp.net core MVC用的没有那么多,主要以WebApi作为学习目标。 一、创建一个WebApi项目 我使用的是VS2022, .Net 7版本。 在创建界面有几项配置: 配置Https启用Docker使用控制器启用OpenAPI支持不使用顶级语句其中配置…

毛玻璃态卡片悬停效果

效果展示 页面结构组成 页面的组成部分主要是卡片。其中卡片的组成部分主要是包括了图片和详情。 卡片的动效是鼠标悬停在卡片上时,图片会移动到左侧,并且图片是毛玻璃效果。所以我们在布局的时候图片会采用绝对布局。而详情则是基础布局。 CSS3 知识…

springboot和vue:八、vue快速入门

vue快速入门 新建一个html文件 导入 vue.js 的 script 脚本文件 <script src"https://unpkg.com/vuenext"></script>在页面中声明一个将要被 vue 所控制的 DOM 区域&#xff0c;既MVVM中的View <div id"app">{{ message }} </div…

HBase高阶(一)基础架构及存储原理

一、HBase介绍 简介 HBase是Hadoop生态系统中的一个分布式、面向列的开源数据库&#xff0c;具有高可伸缩性、高性能和强大的数据处理能力。广泛应用于处理大规模数据集。 HBase是一种稀疏的、分布式、持久的多维排序map 稀疏&#xff1a;对比关系型数据库和非关系型数据库&a…

记录一次阿里云服务器ECS上启动的portainer无法访问的问题

如下图&#xff0c;在阿里云ECS服务器上安装并启动了portainer&#xff0c;但是在自己电脑上访问不了远程的portainer。 最后发现是要在网络安全组里开放9000端口号&#xff0c;具体操作如下&#xff1a; 在云服务器管理控制台点击左侧菜单中的网络与安全-安全组&#xff0c;然…

二值贝叶斯滤波计算4d毫米波聚类目标动静属性

机器人学中有些问题是二值问题&#xff0c;对于这种二值问题的概率评估问题可以用二值贝叶斯滤波器binary Bayes filter来解决的。比如机器人前方有一个门&#xff0c;机器人想判断这个门是开是关。这个二值状态是固定的&#xff0c;并不会随着测量数据变量的改变而改变。就像门…

FPGA的数字钟带校时闹钟报时功能VHDL

名称&#xff1a;基于FPGA的数字钟具有校时闹钟报时功能 软件&#xff1a;Quartus 语言&#xff1a;VHDL 要求&#xff1a; 1、计时功能:这是数字钟设计的基本功能&#xff0c;每秒钟更新一次,并且能在显示屏上显示当前的时间。 2、闹钟功能:如果当前的时间与闹钟设置的时…

数据结构—快速排序(续)

引言&#xff1a;在上一篇中我们详细介绍了快速排序和改进&#xff0c;并给出了其中的一种实现方式-挖坑法 但其实快速排序有多种实现方式&#xff0c;这篇文章再来介绍其中的另外两种-左右指针法和前后指针法。有了上一篇挖坑法的启示&#xff0c;下面的两种实现会容易许多。 …

蓝桥等考Python组别九级005

第一部分&#xff1a;选择题 1、Python L9 &#xff08;15分&#xff09; 运行下面程序&#xff0c;可以输出几行“*”&#xff1f;&#xff08; &#xff09; for i in range(0, 2): for j in range(0, 5): print(*, end ) print() 5234 正确答案&#xff1a;B 2、P…

5自由度雄克机械臂仿真描点

5自由度雄克机械臂仿真描点 任务 建立雄克机械臂的坐标系和D-H参数表&#xff0c;使用Matlab机器人工具箱&#xff08;Robotics Toolbox&#xff09;&#xff0c;用机械臂末端执行器触碰8个红色的目标点。 代码 %% 机器人学 format compact close all clear clc%% DH参数 L…

新型信息基础设施IP追溯:保护隐私与网络安全的平衡

随着信息技术的飞速发展&#xff0c;新型信息基础设施在全球范围内日益普及&#xff0c;互联网已经成为我们社会和经济生活中不可或缺的一部分。然而&#xff0c;随着网络使用的增加&#xff0c;隐私和网络安全问题也引发了广泛关注。在这个背景下&#xff0c;IP&#xff08;In…

Java实现word excel ppt模板渲染与导出及预览 LibreOffice jodconverter

Java Office 一、文档格式转换 文档格式转换是office操作中经常需要进行一个操作&#xff0c;例如将docx文档转换成pdf格式。 java在这方面有许多的操作方式&#xff0c;大致可以分为内部调用&#xff08;无需要安装额外软件&#xff09;&#xff0c;外部调用&#xff08;需…

nodejs+vue活鲜物流监控系统elementui

第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性&#xff1a;技术背景 5 3.2.2经济可行性 6 3.2.3操作可行性&#xff1a; 6 3.3 项目设计目标与原则 6 3.4系统流程分析 7 3.4.1操作流程 7 3.4.2添加信息流程 8 3.4.3删除信息流程 9 第4章 系统设计 11 …

设计模式7、桥接模式 Bridge

解释说明&#xff1a;将抽象部分与它的实现部分解耦&#xff0c;使得两者都能够独立变化 桥接模式将两个独立变化的维度设计成两个独立的继承等级结构&#xff08;而不会将两者耦合在一起形成多层继承结构&#xff09;&#xff0c;在抽象层将二者建立起一个抽象关联&#xff0c…

施耐德电气:勾勒未来工业愿景,赋能中国市场

9月19日&#xff0c;第23届中国国际工业博览会&#xff08;简称“工博会”&#xff09;在上海隆重召开。作为全球能源管理和自动化领域的数字化转型专家&#xff0c;施耐德电气在工博会现场全方位展现了自身对未来工业的全新视野与深刻见解&#xff0c;不仅展示了其贯通企业设计…

JUC第十二讲:JUC锁: 锁核心类AQS详解

JUC第十二讲&#xff1a;JUC锁: 锁核心类AQS详解 本文是JUC第十二讲&#xff0c;JUC锁: 锁核心类AQS详解。AbstractQueuedSynchronizer抽象类是核心&#xff0c;需要重点掌握。它提供了一个基于FIFO队列&#xff0c;可以用于构建锁或者其他相关同步装置的基础框架。 文章目录 J…