基于机器学习的DDoS检测系统实战

基于机器学习的DDoS检测系统实战(Python+Scikit-learn)|毕业设计必备

摘要:本文手把手教你从0到1实现一个轻量级DDoS攻击检测系统,涵盖数据预处理、特征工程、模型训练与可视化分析。


一、项目背景与意义

DDoS(分布式拒绝服务攻击)是网络安全领域的“头号公敌”,传统基于阈值的检测方法误报率高且难以应对新型攻击。机器学习通过分析流量行为模式,能更精准识别异常。
适合场景

  • 毕业设计选题(网络安全/人工智能方向)
  • 企业级安全防护的简化原型
  • 学术论文实验模块开发

二、环境准备与数据集

1. 工具清单

  • Python 3.8+(必备库:Scikit-learn, Pandas, Matplotlib)
  • 数据集:CIC-DDoS2019(学术研究免费使用)
  • 代码编辑器:VS Code/Jupyter Notebook

2. 数据集关键特征

# 数据集字段示例(共87个特征)
features = ['Flow Duration', 'Total Fwd Packets', 'Total Bwd Packets','Flow Bytes/s', 'Packet Length Mean', 'ACK Flag Count','Init_Win_bytes_forward', 'Label'  # 标签:Benign或DDoS
]

三、核心代码实现(附详细注释)

步骤1:数据预处理

import pandas as pd
from sklearn.model_selection import train_test_split# 加载数据集(假设已下载并解压为train.csv)
data = pd.read_csv('train.csv')# 清洗数据:删除空值、重复项
data = data.dropna().drop_duplicates()# 标签编码:Benign->0, DDoS->1
data['Label'] = data['Label'].apply(lambda x: 0 if x == 'Benign' else 1)# 划分训练集和测试集(8:2)
X = data.drop('Label', axis=1)
y = data['Label']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

步骤2:特征工程——选择关键特征

# 通过随机森林评估特征重要性
from sklearn.ensemble import RandomForestClassifierrf = RandomForestClassifier(n_estimators=100)
rf.fit(X_train, y_train)# 可视化Top10重要特征
import matplotlib.pyplot as pltfeature_importances = pd.Series(rf.feature_importances_, index=X.columns)
top_features = feature_importances.nlargest(10)
top_features.plot(kind='barh', title='Feature Importance')
plt.show()# 选取Top10特征重构数据集
selected_features = top_features.index.tolist()
X_train = X_train[selected_features]
X_test = X_test[selected_features]

步骤3:模型训练与评估(以XGBoost为例)

from xgboost import XGBClassifier
from sklearn.metrics import classification_report, roc_auc_score# 初始化模型
model = XGBClassifier(n_estimators=200,max_depth=5,learning_rate=0.1,subsample=0.8
)# 训练与预测
model.fit(X_train, y_train)
y_pred = model.predict(X_test)# 输出评估报告
print(classification_report(y_test, y_pred))
print(f"ROC-AUC Score: {roc_auc_score(y_test, y_pred):.4f}")

输出示例

              precision  recall  f1-score   support0       0.98      0.99      0.99     356211       0.99      0.98      0.98     28379accuracy                           0.98     64000ROC-AUC Score: 0.9836

四、可视化分析与创新点

1. 实时检测模拟(Flask部署示例)

from flask import Flask, request, jsonify
import joblibapp = Flask(__name__)
model = joblib.load('ddos_model.pkl')  # 加载保存的模型@app.route('/detect', methods=['POST'])
def detect():data = request.jsonfeatures = [data[f] for f in selected_features]  # 使用之前选定的特征prediction = model.predict([features])[0]return jsonify({'is_ddos': int(prediction)})if __name__ == '__main__':app.run(port=5000)

2. 毕业设计创新方向

  • 结合深度学习:用LSTM分析流量时间序列特征
  • 混合检测模型:集成规则引擎+机器学习
  • 实时防御:与SDN控制器联动实现自动阻断

五、常见问题与避坑指南

  1. Q:数据集太大导致内存不足?

    • 解决方案:使用Dask库进行分布式计算,或对数据分段处理
  2. Q:模型在测试集表现好,实际部署效果差?

    • 检查特征工程是否过度依赖特定数据集分布
    • 增加对抗样本训练提升鲁棒性


总结:本文实现的DDoS检测系统准确率达98%,可作为毕业设计基础框架。建议在此基础上扩展可视化大屏、实时报警等功能,提升项目完整度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/15025.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

蓝耘智算平台与DeepSeek R1模型:推动深度学习发展

公主请阅 前言何为DeepSeek R1DeepSeek R1 的特点DeepSeek R1 的应用领域DeepSeek R1 与其他模型的对比 何为蓝耘智算平台使用蓝耘智算平台深度使用DeepSeek R1代码解释:处理示例输入:输出结果: 前言 在深度学习领域,创新迭代日新…

神经网络(Neural Network)

引言 神经网络,作为人工智能和机器学习领域的核心组成部分,近年来在诸多领域取得了显著的进展。受生物神经系统的启发,神经网络通过模拟人脑神经元的工作机制,能够从大量数据中学习复杂的模式和关系。其强大的非线性建模能力使其在图像识别、自然语言处理、语音识别和预测…

基于python多线程多进程爬虫的maa作业站技能使用分析

基于python多线程多进程爬虫的maa作业站技能使用分析 技能使用分析 多线程(8核) import json import multiprocessing import requests from multiprocessing.dummy import Pooldef maa(st):url "https://prts.maa.plus/copilot/get/"m …

npm无法加载文件 因为此系统禁止运行脚本

安装nodejs后遇到问题: 在项目里【node -v】可以打印出来,【npm -v】打印不出来,显示npm无法加载文件 因为此系统禁止运行脚本。 但是在winr,cmd里【node -v】,【npm -v】都也可打印出来。 解决方法: cmd里可以打印出…

2.9寒假作业

web:[SWPUCTF 2022 新生赛]ez_ez_php(revenge) 打开环境,进行代码审计 下面有提示访问游戏flag.php,尝试看看 提示了正确的flag,还有要使用为协议,之前也了解过,关于执行包含文件例如include可使用为协议绕…

【Matlab优化算法-第13期】基于多目标优化算法的水库流量调度

一、前言 水库流量优化是水资源管理中的一个重要环节,通过合理调度水库流量,可以有效平衡防洪、发电和水资源利用等多方面的需求。本文将介绍一个水库流量优化模型,包括其约束条件、目标函数以及应用场景。 二、模型概述 水库流量优化模型…

Mybatis

入门 配置SQL提示 JDBC介绍 JDBC:(Java DataBase Connectivity),就是使用Java语言操作关系型数据库的一套API 本质 sun公司官方定义的一套操作所有关系型数据库的规范,即接口 各个数据库厂商去实现这套接口,提供数据库驱动jar包 我们可以使…

Deepseek的MLA技术原理介绍

DeepSeek的MLA(Multi-head Latent Attention)技术是一种创新的注意力机制,旨在优化Transformer模型的计算效率和内存使用,同时保持模型性能。以下是MLA技术的详细原理和特点: 1. 核心思想 MLA技术通过低秩联合压缩技术,将多个注意力头的键(Key)和值(Value)映射到一…

使用 SDKMAN! 在 Mac(包括 ARM 架构的 M1/M2 芯片)上安装 Java 8

文章目录 1. 安装 SDKMAN!2. 查找可用的 Java 8 版本3. 安装 Java 84. 验证安装5. 切换 Java 版本(可选)6. 解决 ARM 架构兼容性问题总结 可以使用 SDKMAN! 在 Mac(包括 ARM 架构的 M1/M2 芯片)上安装 Java 8。SDKMAN! 是一个强大…

HAL库外设宝典:基于CubeMX的STM32开发手册(持续更新)

目录 前言 GPIO(通用输入输出引脚) 推挽输出模式 浮空输入和上拉输入模式 GPIO其他模式以及内部电路原理 输出驱动器 输入驱动器 中断 外部中断(EXTI) 深入中断(内部机制及原理) 外部中断/事件控…

Windows 本地部署大模型 OpenWebUI+Ollama

安装Ollama Ollama官方网址:https://ollama.com 下载运行大模型 在Ollama官网中查看需要下载的大模型 https://ollama.com/library 复制图片中的链接 打开cmd,运行此命令(此过程会时间会很久) 下载Miniconda Miniconda作用是…

【大模型】Ubuntu下安装ollama,DeepSseek-R1:32b的本地部署和运行

1 ollama 的安装与设置 ollama官网链接:https://ollama.com/ 在左上角的【Models】中展示了ollama支持的模型在正中间的【Download】中课可以下载支持平台中的安装包。   其安装和模型路径配置操作流程如下: ollama的安装 这里选择命令安装curl -fsSL …

Ollama实现deepseek本地部署

Ollama实现deepseek本地部署 1.Ollama下载与安装2.ollama获取模型并部署2.1 使用ollama pull2.2 通过ollama create 创建自定义模型2.3 本地运行 3.使用streamlit实现网页版RAG部署3.1 加载相关包3.2 文档上传、加载与切块3.3 初始化向量存储3.4 初始化向量存储3.5 加载模型&am…

Django开发入门 – 0.Django基本介绍

Django开发入门 – 0.Django基本介绍 A Brief Introduction to django By JacksonML 1. Django简介 1) 什么是Django? 依据其官网的一段解释: Django is a high-level Python web framework that encourages rapid development and clean, pragmatic design. …

苍穹外卖-新增菜品(阿里云OSS文件上传mybatis主键返回批量保存口味表数据)

新增菜品 2.1 需求分析与设计 2.1.1 产品原型 后台系统中可以管理菜品信息,通过 新增功能来添加一个新的菜品,在添加菜品时需要选择当前菜品所属的菜品分类,并且需要上传菜品图片。 新增菜品原型: 当填写完表单信息, 点击&quo…

只需两步,使用ollama即可在本地部署DeepSeek等常见的AI大模型

只需两步,使用ollama即可在本地部署DeepSeek等常见的AI大模型 1.下载ollama,进入ollama官网即可将ollama下载到本地,之后按照提示安装ollama。 https://ollama.com/download/windows 2.安装大模型 进入ollama官网模型页面,找到所需的模型及版…

java基础语法中阶

一、面向对象 补充快捷键:alt鼠标左键,实现同时多行选中相同位置的内容。 1.类与对象 2.封装 3.构造方法 altinsert添加构造方法 4.内存分布 对象 类型 this关键字的使用 成员变量与局部变量 %s是占位符 ,ctrlaltv-补全对象 for循环的快速生成方…

DeepSeek 评价开源框架存在幻觉么?

DeepSeek 横空出世 2025 年,DeepSeek 以「价格屠夫」姿态将 API 成本降至新低(输入 0.1 元/百万 tokens,输出 2 元/百万 tokens9)霸榜了 AI 热搜。 AI 生成内容中最让人关注的就是回答内容是否存在 “幻觉”,我们不希望…

【大模型】硅基流动对接DeepSeek使用详解

目录 一、前言 二、硅基流动介绍 2.1 硅基流动平台介绍 2.1.1 平台是做什么的 2.2 主要特点与功能 2.2.1 适用场景 三、硅基流动快速使用 3.1 账户注册 3.2 token获取 3.2.1 获取token技巧 四、Cherry-Studio对接DeepSeek 4.1 获取 Cherry-Studio 4.2 Cherry-Stud…

DeepSeek之Win10系统部署教程

一、下载并安装Ollama 1、为什么要安装Ollama的呢? Ollama 是一个用于本地部署和管理大型语言模型(LLM)的工具,支持多种模型格式和框架。 它可以帮助用户轻松下载、配置和运行模型,同时提供统一的接口和依赖管理。 …