机器学习在癌症分子亚型分类中的应用

学习笔记:机器学习在癌症分子亚型分类中的应用——Cancer Cell 研究解析


在这里插入图片描述

1. 文章基本信息

  • 标题:Classification of non-TCGA cancer samples to TCGA molecular subtypes using machine learning
  • 发表期刊:Cancer Cell
  • 发表时间:2025 年,第 53 卷,第 2 期
  • 研究目标
    • 开发机器学习分类器,用于将非 TCGA 样本映射到TCGA 定义的分子亚型
    • 支持多组学数据整合(mRNA、DNA 甲基化、CNV、突变、miRNA),提高分类准确度。
    • 提供标准化工具(Docker 容器化),使研究和临床应用更便捷。

2. 文章的主要行文思路

(1) 引言(Introduction)

  • 介绍癌症传统分类方法(基于组织学和解剖学分类)的局限性。
  • 介绍 TCGA 数据集在癌症亚型研究中的重要性。
  • 说明当前分子亚型分类方法在非 TCGA 样本上的应用挑战。
  • 提出研究目标:使用机器学习方法开发分类器,将非 TCGA 样本归类到 TCGA 定义的亚型

(2) 方法(Methods)

  • 数据来源:使用 TCGA 的多组学数据,包括 mRNA、DNA 甲基化、CNV、miRNA、突变数据。
  • 机器学习方法
    • 使用五种 ML 方法(AKLIMATE、CloudForest、SKGrid、JADBio、subSCOPE)。
    • 训练 8,791 个 TCGA 样本,涵盖 26 种癌症队列和 106 个分子亚型。
    • 使用交叉验证评估模型性能,最终选出 737 个最优分类器。
  • 外部验证
    • 采用 METABRIC 和 AURORA 乳腺癌数据集,测试模型的泛化能力。

在这里插入图片描述

(3) 结果(Results)

  • 分类模型构建与性能评估

    • 统计不同数据类型对分类的贡献。
    • 发现 mRNA 在大多数癌症亚型分类中起主导作用。
      在这里插入图片描述
  • 外部数据集验证

    • 评估不同 ML 方法在不同测序平台(RNA-seq vs. 微阵列)上的稳健性。
  • 模型泛化能力

    • 发现 70 个样本足以预测分类器的最终性能。
    • 研究不同癌症亚型对单一数据类型的依赖程度。

(4) 讨论(Discussion)

  • TCGA 亚型分类的临床应用潜力
    • 预测新样本时,可提供标准化的癌症分子亚型信息。
    • 未来可用于开发简化的癌症检测面板。

在这里插入图片描述

  • 研究局限性
    • TCGA 数据可能未涵盖所有癌症亚型。
    • 不同测序平台可能影响模型泛化能力。

(5) 结论(Conclusion)

  • 研究提供了一个通用的分类框架,可用于非 TCGA 样本的 TCGA 亚型分类
  • 公开 737 个高性能分类器,可用于癌症检测和精准医学研究

3. 文章的主要贡献

(1) 机器学习驱动的癌症分型

  • 使用 5 种机器学习方法 训练 TCGA 数据:
    • AKLIMATE
    • CloudForest
    • SKGrid
    • JADBio
    • subSCOPE
  • 训练 412,585 个分类模型,最终筛选出 737 个最优模型
  • 提供 Docker 版本,保证可复现性和易用性

(2) 多组学数据整合

  • 研究分析了不同数据类型的贡献
    • mRNA 对大多数癌症亚型分类最关键。
    • DNA 甲基化 在 LGG、GBM 等脑肿瘤分类中尤为重要。
    • 突变数据(Mutations) 适用于黑色素瘤(SKCM)。
    • 整合多种组学数据可提高分类准确度

(3) 临床应用价值

  • 提供 TCGA 亚型分类,提高癌症精准医学能力
    • 不同 TCGA 亚型的患者具有不同的预后和治疗策略
    • 例如:CMS1 结直肠癌(高 MSI-H)对 PD-1 免疫治疗敏感,而 CMS4 免疫排斥明显。
  • 帮助医生和研究人员在新数据集中分类样本,指导精准治疗。

(4) 公开可用的工具

  • 提供 Docker 容器,简化安装和使用
  • GitHub 代码公开,提高可复现性

https://github.com/NCICCGPO/gdan-tmp-models


3. 作者的主要单位

单位机构类型研究重点是否与临床相关
Oregon Health & Science University (OHSU)医学中心癌症基因组学、精准医学✅ 高度相关
University of California, San Francisco (UCSF)医学中心肿瘤学、精准医学✅ 高度相关
Dana-Farber Cancer Institute (DFCI)癌症中心肿瘤学、临床研究✅ 高度相关
MD Anderson Cancer Center (UTMDACC)癌症医院癌症治疗、精准医学✅ 高度相关
National Cancer Institute (NCI)政府研究机构癌症基因组、精准医学✅ 高度相关
The Broad Institute (MIT & Harvard)研究机构癌症基因组、药物开发✅ 高度相关
University of California, Santa Cruz (UCSC)大学计算生物学、生物信息学❌ 主要是计算研究
King Abdullah University of Science and Technology (KAUST)大学计算机科学、机器学习❌ 主要是算法,不直接涉及临床

📌 结论

  • 该研究团队涵盖了癌症精准医学、基因组学、计算生物学、机器学习等多个领域,保证了该研究的高临床相关性和计算分析的前沿性

4. 如何使用 Docker 进行数据处理

(1) 安装 Docker

首先,确保服务器已安装 Docker:

docker --version  # 确认安装

如果未安装,可以运行以下命令安装:

sudo apt update
sudo apt install docker.io -y
sudo systemctl start docker
sudo systemctl enable docker

(2) 克隆 GitHub 仓库

git clone https://github.com/NCICCGPO/gdan-tmp-models.git
cd gdan-tmp-models

(3) 拉取 Docker 镜像

docker pull nciccpo/gdan-tmp-aklimate:latest
docker pull nciccpo/gdan-tmp-cloudforest:latest
docker pull nciccpo/gdan-tmp-skgrid:latest
docker pull nciccpo/gdan-tmp-jadbio:latest
docker pull nciccpo/gdan-tmp-subscope:latest

(4) 准备输入数据

mkdir -p ~/gdan-input
mkdir -p ~/gdan-config

将**RNA-seq 表达数据(FPKM/TPM)**放入 ~/gdan-input/ 目录,并创建 YAML 配置文件 ~/gdan-config/config.yml

model: aklimate
input_data:mRNA: /data/mRNA_expression.csv
output:results: /data/prediction_results.csv

(5) 运行 Docker 进行 TCGA 亚型预测

docker run --rm --cpus=64 \-v ~/gdan-input:/data \-v ~/gdan-config:/config \nciccpo/gdan-tmp-aklimate:latest /config/config.yml

📌 参数解释

  • --cpus=64:使用 64 核 CPU(可根据服务器性能调整)。
  • -v ~/gdan-input:/data:映射输入数据目录到 /data
  • -v ~/gdan-config:/config:映射 YAML 配置文件目录到 /config

(6) 查看预测结果

ls ~/gdan-input
cat ~/gdan-input/prediction_results.txt

或者:

import pandas as pd
df = pd.read_csv("~/gdan-input/prediction_results.csv")
print(df.head())

5. 结果解读

示例结果:

Sample_ID    Predicted_TCGA_Subtype    Confidence_Score
Sample_001   BRCA_LuminalA             0.95
Sample_002   LGG_IDH_Mutant             0.87
Sample_003   SKCM_BRAF_Mutant           0.92

📌 解读

  • Predicted_TCGA_Subtype:模型预测的 TCGA 亚型
  • Confidence_Score(0-1):置信度,越高表示分类越可靠
  • 如果置信度低(如 <0.7),说明该样本可能更偏向其他亚型或需要额外数据支持(如 DNA 甲基化)。

6. 结论

该研究基于 TCGA 数据,提供了精准的癌症亚型分类工具
支持 RNA-seq(mRNA)数据,适用于临床研究和精准医学
使用 Docker 容器化,保证可复现性,提供 737 个高性能分类器
有助于个性化治疗,如免疫治疗和靶向治疗策略的选择

📌 下一步

  • 尝试用自己的 RNA-seq 数据跑一次分析
  • 如果分类结果置信度较低,可考虑添加 DNA 甲基化或突变数据
  • 如有问题,可以查看 Docker 日志:
    docker logs <CONTAINER_ID>
    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/15677.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

48V电气架构全面科普和解析:下一代智能电动汽车核心驱动

48V电气架构&#xff1a;下一代智能电动汽车核心驱动 随着全球汽车产业迈入电动化、智能化的新时代&#xff0c;传统12V电气系统逐渐暴露出其无法满足现代高功率需求的不足。在此背景下&#xff0c;48V电气架构应运而生&#xff0c;成为现代电动汽车&#xff08;EV&#xff09…

Mac(m1)本地部署deepseek-R1模型

1. 下载安装ollama 直接下载软件&#xff0c;下载完成之后&#xff0c;安装即可&#xff0c;安装完成之后&#xff0c;命令行中可出现ollama命令 2. 在ollama官网查看需要下载的模型下载命令 1. 在官网查看deepseek对应的模型 2. 选择使用电脑配置的模型 3. copy 对应模型的安…

操作教程丨使用1Panel开源面板快速部署DeepSeek-R1

近期&#xff0c;DeepSeek-R1模型因其在数学推理、代码生成与自然语言推理等方面的优异表现而受到广泛关注。作为能够有效提升生产力的工具&#xff0c;许多个人和企业用户都希望能在本地部署DeepSeek-R1模型。 通过1Panel的应用商店能够简单、快速地在本地部署DeepSeek-R1模型…

免费在腾讯云Cloud Studio部署DeepSeek-R1大模型

2024年2月2日&#xff0c;腾讯云宣布DeepSeek-R1大模型正式支持一键部署至腾讯云HAI&#xff08;高性能应用服务&#xff09;。开发者仅需3分钟即可完成部署并调用模型&#xff0c;大幅简化了传统部署流程中买卡、装驱动、配网络、配存储、装环境、装框架、下载模型等繁琐步骤。…

C语言-结构体

1.共用体: union //联合--共用体 早期的时候&#xff0c;计算机的硬件资源有限&#xff0c; 能不能让多个成员变量 公用同一块空间 //使用方式 类似 结构体 --- 也是构造类型 struct 结构体名 { 成员变量名 }; union 共用体名 { 成员变量名 }; //表示构造了一个共用体…

多头自注意力中的多头作用及相关思考

文章目录 1. num_heads2. pytorch源码演算 1. num_heads 将矩阵的最后一维度进行按照num_heads的方式进行切割矩阵&#xff0c;具体表示如下&#xff1a; 2. pytorch源码演算 pytorch 代码 import torch import torch.nn as nn import torch.nn.functional as Ftorch.set…

数据仓库和商务智能:洞察数据,驱动决策

在数据管理的众多领域中&#xff0c;数据仓库和商务智能&#xff08;BI&#xff09;是将数据转化为洞察力、支持决策制定的关键环节。它们通过整合、存储和分析数据&#xff0c;帮助组织更好地理解业务运营&#xff0c;预测市场趋势&#xff0c;从而制定出更明智的战略。今天&a…

C++ ——从C到C++

1、C的学习方法 &#xff08;1&#xff09;C知识点概念内容比较多&#xff0c;需要反复复习 &#xff08;2&#xff09;偏理论&#xff0c;有的内容不理解&#xff0c;可以先背下来&#xff0c;后续可能会理解更深 &#xff08;3&#xff09;学好编程要多练习&#xff0c;简…

半导体制造工艺讲解

目录 一、半导体制造工艺的概述 二、单晶硅片的制造 1.单晶硅的制造 2.晶棒的切割、研磨 3.晶棒的切片、倒角和打磨 4.晶圆的检测和清洗 三、晶圆制造 1.氧化与涂胶 2.光刻与显影 3.刻蚀与脱胶 4.掺杂与退火 5.薄膜沉积、金属化和晶圆减薄 6.MOSFET在晶圆表面的形…

Avnet RFSoC基于maltab得5G 毫米波 开发工具箱

使用 MATLAB 连接到 AMD Zynq™ RFSoC 评估板。使用 RF 附加卡执行 OTA 测试。使用 HDL Coder 部署算法 版本要求&#xff1a; 大于 2023b 需要以下支持包之一&#xff1a; 适用于 Xilinx 基于 Zynq 的无线电&#xff08;R2023b 及更早版本&#xff09;的通信工具箱支持包适…

第三节 docker基础之---Commit+Dockerfile制作

docker目前镜像的制作两种方法&#xff1a; 1&#xff0c;基于docker Commit制作镜像 2&#xff0c;基于dockerfile制作镜像&#xff0c;Dockerfile 为主流的制作方式 如果不制作镜像删除容器之后则里面配置的文件也随之删除&#xff1a; [rootdocker ~]# docker images 查看…

推荐一个免费的、开源的大数据工程学习教程

在当今信息爆炸的时代&#xff0c;每一个企业都会产生大量的数据&#xff0c;而大数据也已经成为很多企业发展的重要驱动力&#xff0c;然而如何有效得处理和分析这些海量的数据&#xff0c;却是一个非常有挑战的技术。 今天推荐一个免费的数据工程教程&#xff0c;带你系统化…

【文档智能多模态】英伟达ECLAIR-端到端的文档布局提取,并集成阅读顺序方法

笔者在前期一个系列分享了各种文档智能相关的技术方法&#xff0c;可以参考《文档智能系列栏目》&#xff0c;涵盖各种常见方法。 下面直接看看这个端到端的文档智能结构化方法&#xff0c;供参考。 方法 一、架构 ECLAIR 采用了一个较大的视觉编码器&#xff08;657M 参数…

解锁Netty:Channel更替与HashMap管理的奇妙联动

个人CSDN博客主页&#xff1a; java之路-CSDN博客 ( 期待您的关注 ) 目录 Netty 的 Channel 机制探秘 HashMap 在 Netty 中的角色 创建新 Channel 时的操作步骤 新 Channel 的创建流程 确定老 Channel 的标识 移除老 Channel 的具体方法 从 HashMap 中移除 关闭和回收老…

小白零基础如何搭建CNN

1.卷积层 在PyTorch中针对卷积操作的对象和使用的场景不同&#xff0c;如有1维卷积、2维卷积、 3维卷积与转置卷积&#xff08;可以简单理解为卷积操作的逆操作&#xff09;&#xff0c;但它们的使用方法比较相似&#xff0c;都可以从torch.nn模块中调用&#xff0c;需要调用的…

12.翻转、对称二叉树,二叉树的深度

反转二叉树 递归写法 很简单 class Solution { public:TreeNode* invertTree(TreeNode* root) {if(rootnullptr)return root;TreeNode* tmp;tmproot->left;root->leftroot->right;root->righttmp;invertTree(root->left);invertTree(root->right);return …

算法之 博弈问题

文章目录 巴什博弈292.Nim 游戏 尼姆博弈斐波那契博弈其他博弈1025.除数博弈 博弈问题&#xff0c;就是双方之间的PK,关注的重点是 谁先&#xff1f;以及A,B各自赢的条件 一般有数学问题&#xff0c;动态规划&#xff0c;搜索进行求解 巴什博弈 下面的这题Nim 游戏&#xff0c;…

Linux 安装 Ollama

1、下载地址 Download Ollama on Linux 2、有网络直接执行 curl -fsSL https://ollama.com/install.sh | sh 命令 3、下载慢的解决方法 1、curl -fsSL https://ollama.com/install.sh -o ollama_install.sh 2、sed -i s|https://ollama.com/download/ollama-linux|https://…

DDR原理详解

DDR原理详解 存储器主要分为只读存储器 ROM 和随机存取存储器 RAM两大类。 ROM&#xff1a;只读存储器 ROM 所存数据&#xff0c;一般是装入整机前事先写好的,整机工作过程中只能读出&#xff0c;ROM所存数据稳定&#xff0c;断电后所存数据也不会改变。 RAM&#xff1a;随机…

推荐一款 免费的SSL,自动续期

支持自动续期 、泛域名 、可视化所有证书时效性 、可配置CDN 的一款工具。免费5个泛域名和1个自动更新。 链接 支持&#xff1a;nginx、通配符证书、七牛云、腾讯云、阿里云、CDN、OSS、LB&#xff08;负载均衡&#xff09; 执行自动部署脚本 提示系统过缺少crontab 安装cro…