时间序列分析基础篇

**时间序列分析(time series analysis)是量化投资中的一门基本技术。时间序列是指在一定时间内按时间顺序测量的某个变量的取值序列。**比如变量是股票价格,那么它随时间的变化就是一个时间序列;同样的,如果变量是股票的收益率,则它随时间的变化也是一个时间序列。时间序列分析就是使用统计的手段对这个序列的过去进行分析,以此对该变量的变化特性建模、并对未来进行预测。

时间序列分析试图通过研究过去来预测未来。

一个时间序列可能存在的特征包括以下几种:

  • **趋势:**趋势是时间序列在某一方向上持续运动(比如牛市时股市每天都在上涨,股票收益率持续为正;熊市时股市每天都在下跌,股票收益率持续为负)。趋势经常出现在金融时间序列中,特别是大宗商品价格;许多商品交易顾问(CTA)基金在他们的交易算法中都使用了复杂的趋势识别模型。

  • **季节变化:**许多时间序列中包含季节变化。在金融领域,我们经常看到商品价格的季节性变化,特别是那些与生长季节或温度变化有关的商品,比如天然气。

  • **序列相关性:金融时间序列的一个最重要特征是序列相关性(serial correlation),又称为自相关性(autocorrelation)。**以投资品的收益率序列为例,我们会经常观察到一段时间内的收益率之间存在正相关或者负相关。此外,波动聚类(volatility clustering)也是一种序列相关性,它意味着高波动的阶段往往伴随着高波动的阶段出现、低波动的阶段往往伴随着低波动的阶段出现,这在量化投资中尤为重要。比如下图为 2001 年到 2017 年上证指数日收益率的标准差,从中可以清晰的看到波动聚类。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

**随机噪声:**它是时间序列中除去趋势、季节变化和自相关性之后的剩余随机扰动。由于时间序列存在不确定性,随机噪声总是夹杂在时间序列中,致使时间序列表现出某种震荡式的无规律运动。

量化投资的交易者的目标是利用统计建模来识别金融时间序列中潜在的趋势、季节变化和序列相关性。

金融时间序列的关系中,最重要的当属**自相关性。**对于金融时间序列,比如投资品的收益率,看似随机的时间序列中往往存在着惊人的自相关。对自相关建模并加以利用能够大幅提高交易信号的准确性。配对交易的均值回复策略就是这么一个例子。均值回复策略利用一对投资品价差序列的负相关性进行投资,产生做多或者做空的交易信号,实现盈利。

金融时间序列分析的核心就是挖掘该时间序列中的自相关性。

协方差和相关系数

协方差是有量纲的,因此它的大小受随机变量本身波动范围的影响

当两个随机变量的波动范围扩大 100 倍后,它们的协方差扩大了 10000 倍。因此,人们希望使用某个和协方差有关,但是又是无量纲的测量来描述两个随机变量的相关性。最简单的做法就是用变量自身的波动对协方差进行标准化。相关系数(correlation 或者 correlation coefficient)便由此得来。

ρ \rho ρ表示 x和 y 的总体相关系数(population correlation),它的定义为:

ρ ( X , Y ) = E [ ( X − μ X ) ( Y − μ Y ) ] σ X σ Y = C o v ( X , Y ) σ X σ Y \rho(X,Y)=\frac{E[(X-\mu_{X})(Y-\mu_{Y})]}{\sigma_X\sigma_Y}=\frac{Cov(X,Y)}{\sigma_X\sigma_Y} ρ(X,Y)=σXσYE[(XμX)(YμY)]=σXσYCov(X,Y)

其中 σ X \sigma_X σX σ Y \sigma_Y σY 分别为 X和 Y 的总体标准差(population standard deviation)。通过使用 X 和Y 的标准差对它们的协方差归一化, ρ \rho ρ 的取值范围在 -1 到 +1 之间,即 [-1, +1]:

在这里插入图片描述

时间序列的平稳性

平稳性(stationarity)是时间序列分析的基础。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

自相关性和自相关系数

假设我们有弱平稳的投资品收益率序列 { r t } \{ r_t \} {rt} 。自相关性考察的是 t时刻的收益率 r t r_t rt和距当前任意间隔 k时刻的收益率 r t − k r_{t-k} rtk 之间的线性相依关系( k 的取值是所有 $\geq$0的整数)。由于 r t r_t rt r t − k r_{t-k} rtk 来自同一个时间序列,因此我们将第三节中的相关系数的概念应用到 r t r_t rt r t − k r_{t-k} rtk 上,便推广出自相关系数(autocorrelation)。

相关图在我们对时间序列建模时至关重要

拿来一个收益率序列,只要画出相关图,就可以检测该序列在任何间隔 有无统计上显著的自相关性。

对金融时间序列建模,最重要的就是挖掘出该序列中的不同间隔 的自相关性。相关图可以帮助我们判断模型是否合适 如果模型很好的捕捉了自相关性,那么原始时间序列与模型拟合的时间序列之间的残差应该近似的等于随机噪声。

对于任意不为 0 的间隔,随机噪声的自相关均为 0。

显然,间隔为 0 的自相关系数为 1;

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
在这里插入图片描述

因此,在评价对金融时间序列的建模是否合适时,我们首先找到原始时间序列和它的拟合序列之间的残差序列;然后只要画出这个残差序列的相关图就可以看到它是否含有任何模型未考虑的额外自相关性:

如果残差的相关图和上面这个图相似,则可以认为残差是一个随机噪声,而模型已经很好的捕捉了原始时间序列中的自相关性;

如果残差的相关图体现了额外的自相关性,它们将为我们改进已有的模型提供依据,因为这些额外的自相关说明已有模型没有考虑原始时间序列在某些特定间隔上的自相关。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/157687.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue 的响应式数据 ref的使用

ref 是 vue 提供给我们用于创建响应式数据的方法。 ref 常用于创建基本数据&#xff0c;例如&#xff1a;string、number、boolean 等。 ref 还是通过 Object.defineProperty 的 get 与 set 方法&#xff0c;实现的响应式数据。 ref 创建基本数据&#xff1a; <template…

一文带你快速上手MySQL8窗口函数,实现更高效的数据处理

文章目录 MySQL8窗口函数前言窗口函数相关概念介绍窗口函数分区介绍 窗口函数的使用语法介绍实战演练示例一&#xff1a;聚合函数示例二&#xff1a;排名函数示例三&#xff1a;偏移函数示例四&#xff1a;分布函数示例五&#xff1a;首尾函数示例六&#xff1a;其它函数 总结 …

ubuntu下yolov6 tensorrt模型部署

文章目录 ubuntu下yolov6 tensorrt模型部署一、Ubuntu18.04环境配置1.1 安装工具链和opencv1.2 安装Nvidia相关库1.2.1 安装Nvidia显卡驱动1.2.2 安装 cuda11.31.2.3 安装 cudnn8.21.2.4 下载 tensorrt8.4.2.41.2.5 下载仓库TensorRT-Alpha并设置 二、从yolov6源码中导出onnx文…

最近公共祖先

一、题目 将一棵无穷大满二叉树的结点按根结点一层一层地从左往右编号&#xff0c;根结点编号为1。现给定a&#xff0c;b为两个结点。设计一个算法&#xff0c;返回a、b最近的公共祖先的编号。注意其祖先也可能是结点本身。 二、代码 class LCA { public:int getLCA(int a, i…

Eclipse插件安装版本不兼容问题解决方案——Papyrus插件为例

项目场景: Eclipse Papyrus安装后,没有新建Papyrus工程选项,也没有新建Papyrus Model的选项。 打开Papyrus Model会报错 问题描述 同样的,安装其他插件也是。可能某个插件之前安装是好用的,结果Eclipse的版本更新了,就再也安装不好用了 原因分析: 根本原因是因为包之…

数字孪生技术:新零售的未来之路

随着科技的不断进步&#xff0c;新零售产业正经历着巨大的变革。数字孪生作为一种新兴技术正在加速这一变革的进程。它不仅为新零售企业带来了更高效的运营方式&#xff0c;还为消费者提供了更个性化、便捷的购物体验。那么&#xff0c;数字孪生技术究竟如何在新零售产业中发挥…

415. 字符串相加

415. 字符串相加 class Solution { public:string addStrings(string num1, string num2){//i j分别指向当前字符串的最后一位int i num1.length() - 1;int j num2.length() - 1;int add 0;string s "";//不要忽略两个串都遍历完了 但是还有一个进位while (i …

十七、【渐变工具组】

文章目录 渐变工具油漆桶工具 渐变工具 渐变样式有5种&#xff0c;分别是线性渐变&#xff0c;径向渐变&#xff0c;角度渐变&#xff0c;对称渐变&#xff0c;菱形渐变 另外渐变工具的颜色可以进行编辑&#xff0c;需要先打开渐变编辑工具&#xff1a; 如何使用渐变编辑工…

MVVM 与 MVC区别和应用场景?

MVVM 和 MVC 1. MVC2. MVVM 1. MVC MVC 是 Model View Controller 的缩写 Model&#xff1a;模型层&#xff0c;是应用程序中用于处理应用程序数据逻辑的部分。通常模型对象负责在数据库中存取数据。View&#xff1a;视图层&#xff0c;用户界面渲染逻辑&#xff0c;通常视图…

Elasticsearch 分片内部原理—使文本可被搜索、动态更新索引

目录 一、使文本可被搜索 不变性 二、动态更新索引 删除和更新 一、使文本可被搜索 必须解决的第一个挑战是如何使文本可被搜索。 传统的数据库每个字段存储单个值&#xff0c;但这对全文检索并不够。文本字段中的每个单词需要被搜索&#xff0c;对数据库意味着需要单个字…

Hadoop 安装教程 (Mac m1/m2版)

安装JDK1.8 这里最好是安装1.8版本的jdk 1. 进入官网Java Downloads | Oracle Hong Kong SAR, PRC,下滑到中间区域找到JDK8 2.选择mac os,下载ARM64 DMG Installer对应版本 注&#xff1a;这里下载需要注册oracle账号&#xff0c;不过很简单&#xff0c;只需要提供邮箱即可&…

【软件设计师-下午题总结】

目录 下午题之总结于学习记录&#xff1a;题一、数据流图&#xff1a;1、熟悉相关的图形2、实体名称3、数据存储4、补充缺失的数据流和起点终点5、用结构化语言描述6、描述&#xff0c;找加工逻辑的时候7、如何保持数据流平衡 题二&#xff1a;实体联系图&#xff1a;1、常用图…

TensorFlow入门(二十一、softmax算法与损失函数)

在实际使用softmax计算loss时,有一些关键地方与具体用法需要注意: 交叉熵是十分常用的,且在TensorFlow中被封装成了多个版本。多版本中,有的公式里直接带了交叉熵,有的需要自己单独手写公式求出。如果区分不清楚,在构建模型时,一旦出现问题将很难分析是模型的问题还是交叉熵的使…

PTE考试解析

Pte 考试题目 注入漏洞 空格被过滤 用/**/代替空格&#xff0c;发现#被过滤 对&#xff03;进行url编码为%23 输入构造好的payload http://172.16.12.100:81/vulnerabilities/fu1.php?id1%27)/**/and/**/11%23 http://172.16.12.100:81/vulnerabilities/fu1.php?id1%27)/*…

LruCache实现原理

序、慢慢来才是最快的方法。 回顾 LRU &#xff08;Least Recently Used&#xff09;最近最少策略是最常用的缓存淘汰策略。LRU 策略会记录各个数据块的访问 “时间戳” &#xff0c;最近最久未使用的数据最先被淘汰。与其他几种策略相比&#xff0c;LRU 策略利用了 “局部性…

如何使用ChatPPT生成PPT文档

简介 ChatPPT是一个基于人工智能的PPT生成工具&#xff0c;可以帮助用户快速生成高质量的PPT文档。ChatPPT使用自然语言处理技术&#xff0c;可以根据用户的指令生成PPT内容、设计和排版。 使用方法 ChatPPT提供了两种使用方式&#xff1a;在线体验版和Office插件版。 在线…

【数据结构】:队列的实现

队列 队列的概念及结构 队列&#xff1a;只允许在一端进行插入数据操作&#xff0c;在另一端进行删除数据操作的特殊线性表&#xff0c;队列具有先进先出 FIFO(First In First Out) 入队列&#xff1a;进行插入操作的一端称为队尾 出队列&#xff1a;进行删除操作的一端称为队…

为Mkdocs网站添加评论系统(以giscus为例)

官方文档&#xff1a;Adding a comment system 这里我同样推荐giscus 利用 GitHub Discussions 实现的评论系统&#xff0c;让访客借助 GitHub 在你的网站上留下评论和反应吧&#xff01;本项目深受 utterances 的启发。 开源。&#x1f30f;无跟踪&#xff0c;无广告&#…

虚拟机安装Docker

安装Docker Docker 分为 CE 和 EE 两大版本。CE 即社区版&#xff08;免费&#xff0c;支持周期 7 个月&#xff09;&#xff0c;EE 即企业版&#xff0c;强调安全&#xff0c;付费使用&#xff0c;支持周期 24 个月。 Docker CE 分为 stable test 和 nightly 三个更新频道。…

交通 | python网络爬虫:“多线程并行 + 多线程异步协程

推文作者&#xff1a;Amiee 编者按&#xff1a; 常规爬虫都是爬完一个网页接着爬下一个网页&#xff0c;不适应数据量大的网页&#xff0c;本文介绍了多线程处理同时爬取多个网页的内容&#xff0c;提升爬虫效率。 1.引言​ 一般而言&#xff0c;常规爬虫都是爬完一个网页接着…