基于金枪鱼群优化的BP神经网络(分类应用) - 附代码

基于金枪鱼群优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于金枪鱼群优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.金枪鱼群优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 金枪鱼群算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用金枪鱼群算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.金枪鱼群优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 金枪鱼群算法应用

金枪鱼群算法原理请参考:https://blog.csdn.net/u011835903/article/details/123562840

金枪鱼群算法的参数设置为:

popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从金枪鱼群算法的收敛曲线可以看到,整体误差是不断下降的,说明金枪鱼群算法起到了优化的作用:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/164604.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

接口自动化测试持续集成,Soapui接口功能测试参数化

按照自动化测试分层实现的原理,每一层的脚本实现都要进行参数化,自动化的目标就是要实现脚本代码与测试数据分离。当测试数据进行调整的时候不会对脚本的实现带来震荡,从而提高脚本的稳定性与灵活度,降低脚本的维护成本。Soapui最…

【学习笔记】RabbitMQ01:基础概念认识以及快速部署

参考资料 RabbitMQ官方网站RabbitMQ官方文档噼咔噼咔-动力节点教程 文章目录 一、认识RabbitMQ1.1 消息中间件(MQ Message Queue 消息队列1.2 主流的消息中间件1.3 MQ的应用场景1.3.1 异步处理1.3.2 系统解耦1.3.3 流量削峰1.3.4 日志处理 二、RabbitMQ运行环境搭建…

【C语言进阶(14)】程序的编译与链接

文章目录 前言Ⅰ 程序的翻译环境1. 编译的过程2. 链接的过程 Ⅱ 程序的执行环境Ⅲ 预定义符号Ⅳ 预处理指令 #define1. #define 定义标识符2. #define 定义宏3. #define 替换规则 Ⅴ 预处理操作符 # 和1. # 操作符2. ## 操作符 Ⅵ 宏和函数的对比Ⅶ 预处理指令 #undefⅧ 条件编…

【力扣每日一题】2023.10.19 同积元组

目录 题目: 示例: 分析: 代码: 题目: 示例: 分析: 题目比较简洁,给我们一个元素各不相同的数组,要我们找出该数组里能够组成 a*bc*d 的组合数目。 比较直观的做法是我们直接暴…

【STM32】--PZ6860L,STM32F4,ARM3.0开发板

一、ARM3.0开发板详细介绍 1.开发板整体介绍 (1)各种外设和主板原理图 (2)主板供电部分5V和3.3V兼容设计 注意跳线帽 2.STM32核心板介绍 3.核心板原理图 STM32和51的IO对应关系 下载电路 二、ARM3.0开发板ISP下载原理分析 1.I…

分布式系统部署Redis

文章目录 一、单点问题二、主从模式概念配置主从结构查看主从节点断开从属关系拓扑结构主从复制原理replication复制offset偏移量 全量复制和部分复制全量复制部分复制 实时复制redis主节点无法重启 三、主从哨兵模式哨兵概念监控程序人工恢复自动恢复为什么是哨兵集合使用dock…

一文拿下HTTP

HTTP HTTP协议 是应用层使用最广泛的协议之一,从浏览器获取到网页,就是基于http 浏览器和服务器之间的交互桥梁 基于传输层的TCP协议来实现的,是一种无状态的应用层协议 为啥是无状态的呢 简化服务器端的处理逻辑:HTTP是无状态…

如何用记事本制作一个简陋的小网页(3)——注册信息表

目录 前提须知: 一、表格建立之前: 二、表格的建立: 三、信息表的内容填充: 1.昵称 和 电话 : 2.密码: 3.性别: 4. 爱好: 5.民族: 6. 出生日期: 7.…

Android apkanalyzer简介

关于作者:CSDN内容合伙人、技术专家, 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 ,擅长java后端、移动开发、商业变现、人工智能等,希望大家多多支持。 目录 一、导读二、概览三、用法3.1 使用 Android Studio3.1.1…

Python词语转拼音

使用python写的图形汉语词语转拼音小工具 1)安装库 pip install flet 2)代码 # 声母列表 initial_consonant_list [b, p, m, f, d, t, n, l, g, k, h, j, q, x, zh, ch, sh, r,z, c, s, y, w] # 韵母列表 list_of_vowels [a, o, e, i, u, , ai, ei, ui, ao, ou, iu, ie, e…

SpringCloudSleuth异步线程支持和传递

场景 在使用Sleuth做链路跟踪时,默认情况下异步线程会断链,需要进行代码调整支持。 调整内容 方式一 使用Async实现异步线程 开启异步线程池 EnableAsync SpringBootApplication public class LizzApplication {public static void main(String[] a…

织造业的数字安全守护者:深入了解迅软DSE数据加密

客户简要介绍 某织造企业成立于2004年,工厂位于苏州平望,公司目前拥有先进纺织设备330台套和日本瑞士等前道配套设备,公司占地33亩、具有现代化标准厂房办公楼等3万平米。 某织造企业面料、功能性面料、新材料面料的生产商,公司坚…

教程更新 | 持续开源 RK3568驱动指南-驱动基础进阶篇

《iTOP-RK3568开发板驱动开发指南》手册文档更新,手册内容对应视频教程,后续资料会不断更新,不断完善,帮助用户快速入门,大大提升研发速度。 ✦ 第一篇 驱动基础 第1章 前言 第2章 你好!内核源码 第3章 …

Mysql第二篇---InnoDB数据存储结构

Mysql第二篇—InnoDB数据存储结构 数据库的存储结构: 页 索引结构给我们提供了高效的索引方式, 不过索引信息以及数据记录都是保存在文件上的(innodb的ibd文件, MyISAM的MyI和MyD文件), 确切的说是存储在页结构中. 另一方面, 索引是在存储引擎中实现的, MySQL服务器上的存储引…

工业自动化编程与数字图像处理技术

工业自动化编程与数字图像处理技术 编程是计算机领域的基础技能,对于从事软件开发和工程的人来说至关重要。在工业自动化领域,C/C仍然是主流的编程语言,特别是用于工业界面(GUI)编程。工业界面是供车间操作员使用的,使用诸如Hal…

二叉树,堆排序及TopK问题

要讲二叉树的概念,就要先讲树的概念。 树是什么呢? 树其实是一种储存数据的结构,因为他的结构倒过来和生活中的树很相似所以才被称之为树。 这是一颗多叉树,从最顶端的节点可以找到下边的几个节点,下边的节点又可以找…

【力扣刷题】回文链表、环形链表、合并两个有序链表

🐌个人主页: 🐌 叶落闲庭 💨我的专栏:💨 c语言 数据结构 javaEE 操作系统 Redis 石可破也,而不可夺坚;丹可磨也,而不可夺赤。 刷题篇 一、回文链表1.1 题目描述1.2 思路分…

1.16.C++项目:仿muduo库实现并发服务器之HttpContext以及HttpServer模块的设计

文章目录 一、HttpContext模块二、HttpServer模块三、HttpContext模块实现思想(一)功能(二)意义(三)接口 四、HttpServer模块实现思想(一)功能(二)意义&#…

经典网络模型

Alexnet VGG VGG的启示 VGGNet采用了多次堆叠3x3的卷积核,这样做的目的是减少参数的数量。 例如,2个3x3的卷积核效果相当于1个5x5的卷积核效果,因为它们的感受野(输入图像上映射区域的大小)相同。但2个3x3卷积核的参数…

1024程序员狂欢节 | IT前沿技术、人工智能、数据挖掘、网络空间安全技术

一年一度的1024程序员狂欢节又到啦!成为更卓越的自己,坚持阅读和学习,别给自己留遗憾,行动起来吧! 那么,都有哪些好书值得入手呢?小编为大家整理了前沿技术、人工智能、集成电路科学与芯片技术、…