Python特征分析重要性的常用方法

前言

特征重要性分析用于了解每个特征(变量或输入)对于做出预测的有用性或价值。目标是确定对模型输出影响最大的最重要的特征,它是机器学习中经常使用的一种方法。

图片

为什么特征重要性分析很重要?

如果有一个包含数十个甚至数百个特征的数据集,每个特征都可能对你的机器学习模型的性能有所贡献。但是并不是所有的特征都是一样的。有些可能是冗余的或不相关的,这会增加建模的复杂性并可能导致过拟合。

特征重要性分析可以识别并关注最具信息量的特征,从而带来以下几个优势:

  • 改进的模型性能

  • 减少过度拟合

  • 更快的训练和推理

  • 增强的可解释性

下面我们深入了解在Python中的一些特性重要性分析的方法。

特征重要性分析方法

1、排列重要性 PermutationImportance

该方法会随机排列每个特征的值,然后监控模型性能下降的程度。如果获得了更大的下降意味着特征更重要

 from sklearn.datasets import load_breast_cancerfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.inspection import permutation_importancefrom sklearn.model_selection import train_test_splitimport matplotlib.pyplot as pltcancer = load_breast_cancer()X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, random_state=1)rf = RandomForestClassifier(n_estimators=100, random_state=1)rf.fit(X_train, y_train)baseline = rf.score(X_test, y_test)result = permutation_importance(rf, X_test, y_test, n_repeats=10, random_state=1, scoring='accuracy')importances = result.importances_mean# Visualize permutation importancesplt.bar(range(len(importances)), importances)plt.xlabel('Feature Index')plt.ylabel('Permutation Importance')plt.show()

图片

2、内置特征重要性(coef_或feature_importances_)

一些模型,如线性回归和随机森林,可以直接输出特征重要性分数。这些显示了每个特征对最终预测的贡献。

 from sklearn.datasets import load_breast_cancerfrom sklearn.ensemble import RandomForestClassifierX, y = load_breast_cancer(return_X_y=True)rf = RandomForestClassifier(n_estimators=100, random_state=1)rf.fit(X, y)importances = rf.feature_importances_# Plot importancesplt.bar(range(X.shape[1]), importances)plt.xlabel('Feature Index')plt.ylabel('Feature Importance')plt.show()

图片

3、Leave-one-out

迭代地每次删除一个特征并评估准确性。

 from sklearn.datasets import load_breast_cancerfrom sklearn.model_selection import train_test_splitfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.metrics import accuracy_scoreimport matplotlib.pyplot as pltimport numpy as np# Load sample dataX, y = load_breast_cancer(return_X_y=True)# Split data into train and test setsX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)# Train a random forest modelrf = RandomForestClassifier(n_estimators=100, random_state=1)rf.fit(X_train, y_train)# Get baseline accuracy on test database_acc = accuracy_score(y_test, rf.predict(X_test))# Initialize empty list to store importancesimportances = []# Iterate over all columns and remove one at a timefor i in range(X_train.shape[1]):X_temp = np.delete(X_train, i, axis=1)rf.fit(X_temp, y_train)acc = accuracy_score(y_test, rf.predict(np.delete(X_test, i, axis=1)))importances.append(base_acc - acc)# Plot importance scores    plt.bar(range(len(importances)), importances)plt.show()

图片

4、相关性分析

计算各特征与目标变量之间的相关性。相关性越高的特征越重要。

 import pandas as pdfrom sklearn.datasets import load_breast_cancerX, y = load_breast_cancer(return_X_y=True)df = pd.DataFrame(X, columns=range(30))df['y'] = ycorrelations = df.corrwith(df.y).abs()correlations.sort_values(ascending=False, inplace=True)correlations.plot.bar()

图片

5、递归特征消除 Recursive Feature Elimination

递归地删除特征并查看它如何影响模型性能。删除时会导致更大下降的特征更重要。

from sklearn.ensemble import RandomForestClassifierfrom sklearn.feature_selection import RFEimport pandas as pdfrom sklearn.datasets import load_breast_cancerimport matplotlib.pyplot as pltX, y = load_breast_cancer(return_X_y=True)df = pd.DataFrame(X, columns=range(30))df['y'] = yrf = RandomForestClassifier()rfe = RFE(rf, n_features_to_select=10)rfe.fit(X, y)print(rfe.ranking_)
输出为[6 4 11 12 7 11 18 21 8 16 10 3 15 14 19 17 20 13 11 11 12 9 11 5 11]

6、XGBoost特性重要性

计算一个特性用于跨所有树拆分数据的次数。更多的分裂意味着更重要。

 import xgboost as xgbimport pandas as pdfrom sklearn.datasets import load_breast_cancerimport matplotlib.pyplot as pltX, y = load_breast_cancer(return_X_y=True)df = pd.DataFrame(X, columns=range(30))df['y'] = ymodel = xgb.XGBClassifier()model.fit(X, y)importances = model.feature_importances_importances = pd.Series(importances, index=range(X.shape[1]))importances.plot.bar()

图片

7、主成分分析 PCA

对特征进行主成分分析,并查看每个主成分的解释方差比。在前几个组件上具有较高负载的特性更为重要。

 from sklearn.decomposition import PCAimport pandas as pdfrom sklearn.datasets import load_breast_cancerimport matplotlib.pyplot as pltX, y = load_breast_cancer(return_X_y=True)df = pd.DataFrame(X, columns=range(30))df['y'] = ypca = PCA()pca.fit(X)plt.bar(range(pca.n_components_), pca.explained_variance_ratio_)plt.xlabel('PCA components')plt.ylabel('Explained Variance')

图片

8、方差分析 ANOVA

使用f_classif()获得每个特征的方差分析f值。f值越高,表明特征与目标的相关性越强。

 from sklearn.feature_selection import f_classifimport pandas as pdfrom sklearn.datasets import load_breast_cancerimport matplotlib.pyplot as pltX, y = load_breast_cancer(return_X_y=True)df = pd.DataFrame(X, columns=range(30))df['y'] = yfval = f_classif(X, y)fval = pd.Series(fval[0], index=range(X.shape[1]))fval.plot.bar()

图片

9、卡方检验

使用chi2()获得每个特征的卡方统计信息。得分越高的特征越有可能独立于目标。

from sklearn.feature_selection import chi2import pandas as pdfrom sklearn.datasets import load_breast_cancerimport matplotlib.pyplot as pltX, y = load_breast_cancer(return_X_y=True)df = pd.DataFrame(X, columns=range(30))df['y'] = ychi_scores = chi2(X, y)chi_scores = pd.Series(chi_scores[0], index=range(X.shape[1]))chi_scores.plot.bar()

图片

为什么不同的方法会检测到不同的特征?

不同的特征重要性方法有时可以识别出不同的特征是最重要的,这是因为:

1、他们用不同的方式衡量重要性:

有的使用不同特特征进行预测,监控精度下降

像XGBOOST或者回归模型使用内置重要性来进行特征的重要性排列

而PCA着眼于方差解释

2、不同模型有不同模型的方法:

线性模型倾向于线性关系,树模型倾向于非线性有增益的特征

3、交互作用:

有的方法可以获取特征之间的相互左右,而有一些则不行,这就会导致结果的差异

4、不稳定:

使用不同的数据子集,重要性值可能在同一方法的不同运行中有所不同,这是因为数据差异决定的

5、Hyperparameters:

通过调整超参数,如PCA组件或树深度,也会影响结果

所以不同的假设、偏差、数据处理和方法的可变性意味着它们并不总是在最重要的特征上保持一致。

选择特征重要性分析方法的一些最佳实践

  • 尝试多种方法以获得更健壮的视图

  • 聚合结果的集成方法

  • 更多地关注相对顺序,而不是绝对值

  • 差异并不一定意味着有问题,检查差异的原因会对数据和模型有更深入的了解

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/164618.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Oracle database 开启归档日志 archivelog

Oracle database 开启归档日志 archivelog 归档日志模式 (Archivelog Mode)。归档日志模式是一种数据库运行模式,它允许数据库将日志文件保存到归档日志目录中,以便在需要时进行恢复和还原操作。通过开启归档日志模式,可以提高数据库的可靠性…

驱动day2:LED灯实现三盏灯的亮灭

head.h #ifndef __HEAD_H__ #define __HEAD_H__ #define PHY_PE_MODER 0x50006000 #define PHY_PF_MODER 0x50007000 #define PHY_PE_ODR 0x50006014 #define PHY_PF_ODR 0x50007014 #define PHY_RCC 0x50000A28#endif 应用程序 #include <stdio.h> #include <sys/…

通讯网关软件026——利用CommGate X2ORACLE-U实现OPC UA数据转入ORACLE

本文介绍利用CommGate X2ORACLE-U实将OPC UA数据源中的数据转入到ORACLE数据库。CommGate X2ORACLE-U是宁波科安网信开发的网关软件&#xff0c;软件可以登录到网信智汇(http://wangxinzhihui.com)下载。 【案例】如下图所示&#xff0c;将OPC UA数据源的数据写入到ORACLE数据…

利用Nginx可视化管理工具+Cpolar实现本地服务远程访问

文章目录 前言1. docker 一键安装2. 本地访问3. Linux 安装cpolar4. 配置公网访问地址5. 公网远程访问6. 固定公网地址 前言 Nginx Proxy Manager 是一个开源的反向代理工具&#xff0c;不需要了解太多 Nginx 或 Letsencrypt 的相关知识&#xff0c;即可快速将你的服务暴露到外…

驱动编写应用程序控制三盏灯亮灭

应用程序 #include <stdio.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> #include <string.h> int main(int argc, char const *argv[]) {char buf[128] {0};int fd open("/dev/mych…

59 分割等和子集

分割等和子集 NP 完全问题&#xff08;01背包&#xff09;题解1 二维DP题解2 空间优化DP&#xff08;改为1D&#xff09; 给你一个只包含正整数的非空数组 nums 。请你判断是否可以将这个数组分割成两个子集&#xff0c;使得两个子集的元素和相等。 示例 1&#xff1a; 输入&a…

从头开始机器学习:逻辑回归

一、说明 本篇实现线性回归的先决知识是&#xff1a;基本线性代数&#xff0c;微积分&#xff08;偏导数&#xff09;、梯度和、Python &#xff08;NumPy&#xff09;&#xff1b;从线性方程入手&#xff0c;逐渐理解线性回归预测问题。 二、逻辑回归简介 我们将以我们在线性回…

Unity3D Shader新手入门教程:3D溶解与腐蚀特效详解

引言 在游戏开发中&#xff0c;特效是非常重要的一部分&#xff0c;它能够增加游戏的趣味性和可玩性。其中&#xff0c;Shader特效是一种非常常见和常用的特效&#xff0c;它能够通过改变物体表面的渲染方式来实现各种各样的特效效果。本文将详细介绍Unity3D中的Shader 3D溶解与…

uview组件使用笔记

图标样式 修改图标的样式 通过color参数修改图标的颜色通过size参数修改图标的大小&#xff0c;单位为rpx 效果图 <u-icon name"photo" color"#2979ff" size"28"></u-icon>图片图标 1.3.0 这里说的图片图标&#xff0c;指的是小…

基于金枪鱼群优化的BP神经网络(分类应用) - 附代码

基于金枪鱼群优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码 文章目录 基于金枪鱼群优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码1.鸢尾花iris数据介绍2.数据集整理3.金枪鱼群优化BP神经网络3.1 BP神经网络参数设置3.2 金枪鱼群算法应用 4.测试结果…

接口自动化测试持续集成,Soapui接口功能测试参数化

按照自动化测试分层实现的原理&#xff0c;每一层的脚本实现都要进行参数化&#xff0c;自动化的目标就是要实现脚本代码与测试数据分离。当测试数据进行调整的时候不会对脚本的实现带来震荡&#xff0c;从而提高脚本的稳定性与灵活度&#xff0c;降低脚本的维护成本。Soapui最…

【学习笔记】RabbitMQ01:基础概念认识以及快速部署

参考资料 RabbitMQ官方网站RabbitMQ官方文档噼咔噼咔-动力节点教程 文章目录 一、认识RabbitMQ1.1 消息中间件&#xff08;MQ Message Queue 消息队列1.2 主流的消息中间件1.3 MQ的应用场景1.3.1 异步处理1.3.2 系统解耦1.3.3 流量削峰1.3.4 日志处理 二、RabbitMQ运行环境搭建…

【C语言进阶(14)】程序的编译与链接

文章目录 前言Ⅰ 程序的翻译环境1. 编译的过程2. 链接的过程 Ⅱ 程序的执行环境Ⅲ 预定义符号Ⅳ 预处理指令 #define1. #define 定义标识符2. #define 定义宏3. #define 替换规则 Ⅴ 预处理操作符 # 和1. # 操作符2. ## 操作符 Ⅵ 宏和函数的对比Ⅶ 预处理指令 #undefⅧ 条件编…

【力扣每日一题】2023.10.19 同积元组

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 题目比较简洁,给我们一个元素各不相同的数组&#xff0c;要我们找出该数组里能够组成 a*bc*d 的组合数目。 比较直观的做法是我们直接暴…

【STM32】--PZ6860L,STM32F4,ARM3.0开发板

一、ARM3.0开发板详细介绍 1.开发板整体介绍 &#xff08;1&#xff09;各种外设和主板原理图 &#xff08;2&#xff09;主板供电部分5V和3.3V兼容设计 注意跳线帽 2.STM32核心板介绍 3.核心板原理图 STM32和51的IO对应关系 下载电路 二、ARM3.0开发板ISP下载原理分析 1.I…

分布式系统部署Redis

文章目录 一、单点问题二、主从模式概念配置主从结构查看主从节点断开从属关系拓扑结构主从复制原理replication复制offset偏移量 全量复制和部分复制全量复制部分复制 实时复制redis主节点无法重启 三、主从哨兵模式哨兵概念监控程序人工恢复自动恢复为什么是哨兵集合使用dock…

一文拿下HTTP

HTTP HTTP协议 是应用层使用最广泛的协议之一&#xff0c;从浏览器获取到网页&#xff0c;就是基于http 浏览器和服务器之间的交互桥梁 基于传输层的TCP协议来实现的&#xff0c;是一种无状态的应用层协议 为啥是无状态的呢 简化服务器端的处理逻辑&#xff1a;HTTP是无状态…

如何用记事本制作一个简陋的小网页(3)——注册信息表

目录 前提须知&#xff1a; 一、表格建立之前&#xff1a; 二、表格的建立&#xff1a; 三、信息表的内容填充&#xff1a; 1.昵称 和 电话 &#xff1a; 2.密码&#xff1a; 3.性别&#xff1a; 4. 爱好&#xff1a; 5.民族&#xff1a; 6. 出生日期&#xff1a; 7.…

Android apkanalyzer简介

关于作者&#xff1a;CSDN内容合伙人、技术专家&#xff0c; 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 &#xff0c;擅长java后端、移动开发、商业变现、人工智能等&#xff0c;希望大家多多支持。 目录 一、导读二、概览三、用法3.1 使用 Android Studio3.1.1…