2022年亚太杯APMCM数学建模大赛D题储能系统中传热翅片的结构优化求解全过程文档及程序

2022年亚太杯APMCM数学建模大赛

D题 储能系统中传热翅片的结构优化

原题再现

  高效储能技术是解决可再生能源和余热资源波动性和间歇性的核心技术。相变蓄热以其较高的储能密度和近恒温蓄热放热而得到广泛应用。固-液相变材料具有相变前后相变潜热高、体积变化小等特点,易于储存和封装。然而,由于其导热系数普遍较低,导致蓄热和放热过程较长,成为制约其广泛应用的关键因素。为了提高蓄热系统的快速传热能力,需要对系统的结构设计和参数进行优化研究。目前,添加翅片作为一种简单、经济、有效的强化固液相变换热过程的手段得到了广泛的应用。
在这里插入图片描述
  某公司需要对相变蓄热系统中水箱内的传热翅片结构进行设计,以进一步提高蓄热产品的传热性能。蓄热系统的核心部件是管壳式蓄热罐,如图1所示。横截面如图2所示。圆环需要填充蓄热式PCM和翅片结构。当相变材料吸热时,高温工质在内管内循环,储存和利用其余热。当相变材料释放热量时,低温工作流体在内管中循环,吸收和再利用相变材料中储存的热量。
在这里插入图片描述
  公司拟开发小型相变蓄热罐,罐内径0.02 m,罐外径0.05 m,翅片导热系数214 W/(m K),相变材料密度780 kg/m3,相变材料导热系数0.15 W/(m K),相变温度333 K,管外绝热,并且内部充满温度为373 K的工作流体。现在需要您的团队回答以下问题,以提高蓄热系统的传热速率。

  问题1:假设采用图3所示的矩形翅片均匀分布蓄热水箱的横截面。矩形翅片的长度为0.018 m,宽度为0.006 m,翅片之间的间隔角为θ。固态PCM通过吸收管中工作流体的热能来加热。请模拟蓄热罐中的传热过程,优化间隔角θ,并说明在此情况下,PCS平均温度从室温(293 K)上升到相变温度所需的时间。
在这里插入图片描述
  问题2:翅片的形状和几何尺寸对蓄热器的传热速率有很大影响。以图4为例,对三角形翅片的尺寸和分布进行优化,研究其尺寸对相变材料升温速率的影响,并与问题1中矩形翅片结构的传热效果进行对比分析。
在这里插入图片描述
  问题3:进一步优化翅片形状、参数和空间分布的设计,以实现相变材料的最佳传热能力。

  问题4:请写信给公司,建议蓄热水箱的翅片设计。

整体求解过程概述(摘要)

公式部分由于md5码上传耗时,因此以特殊字符代替

  在蓄热器中引入翅片是克服相变材料导热系数低,提高蓄热效率的有效途径传输效率。采用拓扑优化和分形优化相结合的方法,对翅片的结构和分布进行了优化。

  针对问题1,建立了计算流体力学(CFD)的二维有限元模型(FEM)来研究换热过程。用焓-孔隙率法描述相变材料的相变。相变开始于矩形翅片周围,随后延伸至油箱外壁,导致PCM从固相变为液相。考虑到相变材料温度从293K上升到333K,初始相变时间(�1)在� 72°、60°、45°、36°、30°和24°的相变时间分别为47.6min、39.2min、31.4min、25.2min、20.7min、17.2min(�2)分别为158.5min、142.9min、123.4min、106.2min、92.4min、81.9min。这个�1、采用液相分数(fm)和强化比(ER)作为热行为评价指标。最优� 最小为24°�17.2min和最大值中的1个�� 12.3%。

  对于问题2�, 翅片长度(�), 和宽度(�) 系统地研究了三角形翅片的性能。结果表明:� =与对照组相比,24°提高了63.83%、56.34%、46.73%、46.73%和31.71%的升温速率�=72°、60°、45°、36°、30°。� =0.024m比0.024m分别提高42.17%、70.04%和79.52%� =0.006m、0.012m和0.018m。� =0.01m升温速率比对照分别提高7.60%、22.55%、35.91%�=0.008m、0.006m、0.004m。fin参数的优先级顺序为� > � > �. 矩形翅片的加热效率�=72°、45°、30°和24°比三角形风机分别提高11.95%、14.99%、15.43%和15.62%。

  针对问题3,提出了两种优化模型:拓扑优化模型和分形优化模型。对于拓扑优化,采用变密度法进行图像重建,获得最高平均温度。对于分形优化,最佳父子对象根据Murray定律和生长率生成分形树。结果表明,与矩形翅片和三角形翅片相比,拓扑优化分别提高了18.84%和28.17%,分形优化分别提高了14.01%和24.25%。

  对于问题4,向fin公司写了一封推荐信,提出了优化设计的建议。

模型假设:

  1) PCM的物理性质是均匀的、各向同性的、与温度无关的(液态密度除外)。

  2) 相变材料的相变过程被认为是层流的、不稳定的、不可压缩的。

  3) 液体相变材料的自然对流符合Boussinesq假设。

  4) 假定液体分数随温度线性变化。

  5) 模拟过程中忽略了粘性耗散的影响。

  6) 忽略对环境的热损失。

问题重述:

  问题背景
  双壁相变储能罐是一种常用的储能材料。热传输液体流入油箱并将能量损失给PCM。PCM通过从固体到液体的相变吸收热量,并从液体到固体释放热量。翅片嵌入油箱壁之间的PCM中,以加速传热过程。使用翅片可缩短熔化时间,显著提高储能率。为了促进传热过程,需要优化翅片分布。
  问题重述
  问题1:给出了矩形翅片均匀分布的横截面。提出了模拟储罐内传热过程的模型。研究影响计算了相变材料在293K~333K温度范围内的传热时间。
  问题2:基于三角形翅片的新截面,研究翅片尺寸对传热的影响。将结果与矩形翅片。
  问题3:提出一个数学模型,以获得最佳的鳍分布。
  问题4:写一封推荐信给当时的fin公司,以获得最佳的fin设计。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:

部分程序如下:
import numpy
# sigmoid function:scipy.special.expit
import scipy.special
import matplotlib.pyplot
# %matplotlib inlineclass neuralNetwork:# initialise the neural networkdef __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):# set nodes and learningrateself.inodes = inputnodesself.hnodes = hiddennodesself.onodes = outputnodesself.lr = learningrate# set weight,include weight_input_hidden,weight_hidden_output (random)self.wih = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.hnodes, self.inodes))self.who = numpy.random.normal(0.0, pow(self.onodes, -0.5), (self.onodes, self.hnodes))# sigmoid functionself.activation_function = lambda x: scipy.special.expit(x)passdef train(self, inputs_list, targets_list):# convert inputs list to 2d arrayinputs = numpy.array(inputs_list, ndmin=2).Ttargets = numpy.array(targets_list, ndmin=2).T# calculate signals into hidden layerhidden_inputs = numpy.dot(self.wih, inputs)hidden_outputs = self.activation_function(hidden_inputs)# calculate signals into output layerfinal_inputs = numpy.dot(self.who, hidden_outputs)final_outputs = self.activation_function(final_inputs)output_errors = targets - final_outputs# hidden_errors = who.T * output_errorshidden_errors = numpy.dot(self.who.T, output_errors)# update the weights for the links between the hidden and output layersself.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)),numpy.transpose(hidden_outputs))# updata the weights for the links between the input and hidden layersself.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)),numpy.transpose(inputs))passdef query(self, inputs_list):inputs = numpy.array(inputs_list, ndmin=2).Thidden_inputs = numpy.dot(self.wih, inputs)hidden_outputs = self.activation_function(hidden_inputs)final_inputs = numpy.dot(self.who, hidden_outputs)final_outputs = self.activation_function(final_inputs)return final_outputs
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/166143.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

智慧公厕蜕变多功能城市智慧驿站公厕的创新

随着城市发展的不断推进,对公共设施的便利性和智能化要求也日益提高。为满足市民对高品质、便捷、舒适的公共厕所的需求,智慧公厕行业的领航厂家广州中期科技有限公司,全新推出了一体化智慧公厕驿站。凭借着“高科技碳中和物联网创意设计新经…

3、Kafka Broker

4.1 Kafka Broker 工作流程 4.1.1 Zookeeper 存储的 Kafka 信息 (1)启动 Zookeeper 客户端。 [hadoop102 zookeeper-3.5.7]$ bin/zkCli.sh(2)通过 ls 命令可以查看 kafka 相关信息。 [zk: localhost:2181(CONNECTED) 2] ls /kaf…

案例分析真题--架构师

案例分析真题--架构师 试题1 质量属性架构风格 软件架构设计 系统开发基础 数据库系统 其他嵌入式 试题1 质量属性架构风格

TCP/IP(十九)TCP 实战抓包分析(三)TCP 第一次握手 SYN 丢包

一 TCP 三次握手异常情况实战分析 说明: 本文是TCP 三次握手异常系列之一 ① 异常场景 接下里我用三个实验案例,带大家一起探究探究这三种异常关注: 如何刻意练习模拟上述场景 以及 wireshark现象 ② 实验环境 ③ 实验一:TCP 第一次握…

redis(其它操作、管道)、django中使用redis(通用方案、 第三方模块)、django缓存、celery介绍(celery的快速使用)

1 redis其它操作 2 redis管道 3 django中使用redis 3.1 通用方案 3.2 第三方模块 4 django缓存 5 celery介绍 5.1 celery的快速使用 1 redis其它操作 delete(*names) exists(name) keys(pattern*) expire(name ,time) rename(src, dst) move(name, db)) randomkey() type(na…

wireshark数据包内容查找功能详解

wireshark提供通过数据包特征值查找具体数据包的功能,具体查找功能如下, (1)选择查找目标区域(也就是在哪里去匹配特征值) 如下图,【分组列表】区域查找指的是在最上方的数据包列表区域查找&…

QT中窗口自绘制效果展示

项目中需要使用QT进行窗口自绘,前期先做一下技术探索,参考相关资料代码熟悉流程。本着代码是最好的老师原则,在此记录一下。 目录 1.运行效果 2.代码结构 3.具体代码 1.运行效果 2.代码结构 3.具体代码 myspeed.pro QT core gui…

vue视频直接播放rtsp流;vue视频延迟问题解决;webRTC占cpu太大卡死问题解决;解决webRTC播放卡花屏问题:

播放多个视频 <div class"video-box"><div class"video"><iframe style"width:100%;height:100%;" name"ddddd" id"iframes" scrolling"auto" :src"videoLeftUrl"></iframe>&l…

缓存失效方案

一、背景 WRITE &#xff1a; 数据写入Mysql 和 Redis缓存&#xff0c; READ&#xff1a;先从 Redis 缓存中取数据&#xff0c;拿不到再从Mysql中加载&#xff0c;更新到Redis 上图第三阶段&#xff0c;接收Mysql的binlog变更消息&#xff0c;可以参考阿里的 Canal&#xff0…

Ubuntu系统上传文件的多种方法-断网上传-安装包上传-物联网开发维护

一、背景 在全新的Ubuntu系统中&#xff0c;其实是无法执行ifconfig命令的&#xff0c;因为这需要net-tools才能执行。在某些无法连接到外网的情况下&#xff0c;我们常常通过将安装包上传或发送到Ubuntu系统中&#xff0c;解压并安装&#xff0c;以保证相关指令能够执行。 本文…

Python获取微信公众号文章数据

这是一个通过 Python mitmproxy 库 实现获取某个微信公众号下全部文章数据的解决方案。首先需要创建一个 Python 虚拟环境&#xff0c;并进入虚拟环境下&#xff1a; $ python -m venv venv $ venv/Scripts/activate我们需要使用 mitmproxy 库 来建立一个网络代理&#xff0c;…

LeetCode_并查集_DFS_中等_2316.统计无向图中无法互相到达点对数

目录 1.题目2.思路3.代码实现&#xff08;Java&#xff09; 1.题目 给你一个整数 n &#xff0c;表示一张 无向图 中有 n 个节点&#xff0c;编号为 0 到 n - 1 。同时给你一个二维整数数组 edges &#xff0c;其中 edges[i] [ai, bi] 表示节点 ai 和 bi 之间有一条无向边。请…

将语义分割的标注mask转为目标检测的bbox

1. 语义分割标签 1.1 labelme工具 语义分割的标签是利用labelme工具进行标注的,标注的样式如下: 1.2 语义分割的标签样式 2. 转换语义分割的标注到目标检测的bbox 实现步骤 (1) 利用标注的json文件生成mask图片(2) 在mask图片中找到目标的bbox矩形框的左上角点和右下角点(…

Redis 之 SessionCallback RedisCallback 使用

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#x1f4e3;&#x1f4e3;&#x1f4e3; 哈喽&#xff01;大家好&#xff0c;我是「奇点」&#xff0c;江湖人称 singularity。刚工作几年&#xff0c;想和大家一同进步&#x1f91d;&#x1f91d; 一位上进心十足的【Java ToB端大厂…

备忘录模式-撤销功能的实现

在idea写代码的过程中&#xff0c;会经常用到一个快捷键——“crtl z”,即撤销功能。“备忘录模式”则为撤销功能提供了一个设计方案。 1 备忘录模式 备忘录模式提供一种状态恢复机制。在不破坏封装的前提下&#xff0c;捕获对象内部状态并在该对象之外保存这个状态。可以在…

Web自动化测试:测试用例断言!

运行测试用例时&#xff0c;需要判断用例是否执行成功&#xff0c;此时需要有一个我们期望的结果来进行验证。这里unittest中&#xff0c;如果一个case执行的过程中报错&#xff0c;或者我们判断结果不符合期望&#xff0c;就会判定此条用例执行失败&#xff0c;判断的条件主要…

【MySQL】数据库——表操作

文章目录 1. 创建表2. 查看表3. 修改表修改表名add ——增加modify——修改drop——删除修改列名称 4. 删除表 1. 创建表 语法&#xff1a; create table 表名字 ( 列名称 列类型 ) charset set 字符集 collate 校验规则 engine 存储引擎 ; charset set字符集 &#xff0c;若…

【C++代码】二叉搜索树的最近公共祖先,二叉搜索树中的插入操作,删除二叉搜索树中的节点--代码随想录

题目&#xff1a;二叉搜索树的最近公共祖先 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。最近公共祖先的定义为&#xff1a;“对于有根树 T 的两个结点 p、q&#xff0c;最近公共祖先表示为一个结点 x&#xff0c;满足 x 是 p、q 的祖先且 x 的深度尽可能大&a…

小程序中如何使用自定义组件应用及搭建个人中心布局

一&#xff0c;自定义组件 从小程序基础库版本 1.6.3 开始&#xff0c;小程序支持简洁的组件化编程。所有自定义组件相关特性都需要基础库版本 1.6.3 或更高。 开发者可以将页面内的功能模块抽象成自定义组件&#xff0c;以便在不同的页面中重复使用&#xff1b;也可以将复杂的…

MSQL系列(四) Mysql实战-索引分析Explain命令详解

Mysql实战-索引分析Explain命令详解 前面我们讲解了索引的存储结构&#xff0c;我们知道了BTree的索引结构&#xff0c;也了解了索引最左侧匹配原则&#xff0c;到底最左侧匹配原则在我们的项目中有什么用&#xff1f;或者说有什么影响&#xff1f;今天我们来实战操作一下&…