JUC高并发容器-CopyOnWriteArrayList

CopyOnWriteArrayList

  • JUC高并发容器
    • 线程安全的同步容器类
    • 什么是高并发容器?
    • CopyOnWriteArrayList

JUC高并发容器

线程安全的同步容器类

  Java同步容器类通过Synchronized(内置锁)来实现同步的容器,比如Vector、HashTable以及SynchronizedList等容器。线程安全的同步容器类主要有VectorStackHashTable等。另外,Java还提供了一组包装方法,将一个普通的基础容器包装成一个线程安全的同步容器。

  例如通过Collections.synchronized包装方法能将一个普通的SortedSet容器包装成一个线程安全的SortedSet

  1.通过synchronizedSortedSet静态方法包装出一个同步容器

public class CollectionsDemo {public static void main(String[] args) throws InterruptedException {//创建一个基础的有序集合SortedSet<String> elementSet=new TreeSet<>();//增加元素elementSet.add("element 1");elementSet.add("element 2");//将element包装成一个同步容器SortedSet<String> sortedSet = Collections.synchronizedSortedSet(elementSet);//输出容器中的元素System.out.println("SortedSet is :"+sortedSet);CountDownLatch latch = new CountDownLatch(5);ExecutorService pool = Executors.newFixedThreadPool(10);for (int i = 0; i < 5; i++) {int finalI=i;pool.submit(()->{//向同步容器中增加一个元素sortedSet.add("element "+(3+finalI));System.out.println("add element"+(3+finalI));latch.countDown();});}latch.await();//输出容器中的元素System.out.println("SortedSet is :"+sortedSet);}
}

image-20230917175555706

  2.java.util.Collections所提供的同步包装方法

  java.util.Collections还提供了一系列对其他的基础容器进行同步包装的方法,如synchronizedList()方法将基础List包装成线程安全的列表容器,synchronizedMap()方法将基础Map容器包装成线程安全的容器,synchronizedCollection()方法将基础Collection容器包装成线程安全的Collection容器。

  同步包装方法如下:

image-20230917182029322

  与同步包装方法相对应,java.util.Collections还提供了一系列同步包装类,这些包装类都是其内部类。这些同步包装类的实现逻辑很简单:实现了容器的操作接口,在操作接口上使用synchronized进行线程同步,然后在synchronized的临界区将实际的操作委托给被包装的基础容器。

  3.同步容器面临的问题

  可以通过查看Vector、HashTable、java.util.Collections同步包装类的源码,发现这些同步容器实现线程安全的方式是:在需要同步访问的方法上添加synchronized关键字。

  synchronized在线程没有发生争用的场景下处于偏向锁的状态,其性能非常高。但是,一旦发生了线程争用,synchronized会由偏向锁膨胀成重量级锁,在抢占和释放时发生CPU内核态与用户态切换,所以削弱了并发性,降低了吞吐量,而且会严重影响性能。

  因此,为了解决同步容器的性能问题,有了JUC高并发容器。

什么是高并发容器?

  JUC高并发容器是基于非阻塞算法(或者无锁编程算法)实现的容器类,无锁编程算法主要通过CAS(Compare And Swap)+volatile组合实现,通过CAS保障操作的原子性,通过volatile保障变量内存的可见性。无锁编程算法的主要优点如下:

  • 开销较小:不需要在内核态和用户态之间切换进程。
  • 读写不互斥:只有写操作需要使用基于CAS机制的乐观锁,读读操作之间可以不用互斥。

1.List

  JUC包中的高并发List主要有CopyOnWriteArrayList,对应的基础容器为ArrayList

  CopyOnWriteArrayList相当于线程安全的ArrayList,它实现了List接口。在读多写少的场景中,其性能远远高于ArrayList的同步包装容器。

2.Set

  JUC包中的Set主要有CopyOnWriteArraySetConcurrentSkipListSet

  • CopyOnWriteArraySet继承自AbstractSet类,对应的基础容器为HashSet。其内部组合了一个CopyOnWriteArrayList对象,它的核心操作是基于CopyOnWriteArrayList实现的。
  • ConcurrentSkipListSet是线程安全的有序集合,对应的基础容器为TreeSet。它继承自AbstractSet,并实现了NavigableSet接口。ConcurrentSkipListSet是通过ConcurrentSkipListMap实现的。

3.Map

  JUC包中Map主要有ConcurrentHashMapConcurrentSkipListMap

  • ConcurrentHashMap对应的基础容器为HashMap。JDK6中的ConcurrentHashMap采用一种更加细粒度的分段锁加锁机制,JDK8基于Synchronized+CAS实现。
  • ConcurrentSkipListMap对应的基础容器为TreeMap。其内部的Skip List(跳表)结构是一种可以代替平衡树的数据结构,默认是按照Key值升序的。

4.Queue

  JUC包中的Queue的实现类包括三类:单向队列、双向队列和阻塞队列。

  • ConcurrentLinkedQueue是基于列表实现的单向队列,按照FIFO(先入先出)原则对元素进行排序。新元素从队列尾部插入,而获取队列元素则需要从队列头部获取。
  • ConcurrentLinkedDeque是基于链表的双向队列,但是该队列不允许null元素。作为双向队列,ConcurrentLinkedDeque可以当作“栈”来使用,并且高效地支持并发环境。

  JUC还扩展了队列,增加了可阻塞地插入和获取等操作,提供了一组阻塞队列,具体如下:

  • ArrayBlockingQueue:基于数组实现的可阻塞地FIFO队列。
  • LinkedBlockingQueue:基于链表实现的可阻塞的FIFO队列。
  • PriorityBlockingQueue:按优先级排序的队列。
  • DelayQueue:按照元素的Delay时间进行排序的队列。
  • SynchronousQueue:无缓冲等待队列。

CopyOnWriteArrayList

   前面讲到,Collections可以将基础容器包装为线程安全的同步容器,但是这些同步容器包装类在进行元素迭代时并不能进行元素添加操作。

  (1)CopyOnWriteArrayList原理:

  CopyOnWrite(写时复制)就是在修改器对一块内存进行修改时,不直接在原有内存块上进行写操作,而是将内存复制一份,在新的内存中进行写操作,写完之后,再将原来的指针(或者引用)指向新的内存,原来的内存被回收。

  CopyOnWriteArrayList是写时复制思想的一种典型实现,其含有一个指向操作内存的内部指针array,而可变操作(add、set等)是在array数组的副本上进行的。当元素需要被修改或者增加时,并不直接在array指向的原有数组上操作,而是首先对array进行一次复制,将修改的内容写入复制的副本中。写完之后,再将内部指针array指向新的副本,这样就可以确保修改操作不会影响访问器的读取操作。原理如下图所示:

  通俗地说:读操作不会被写操作阻塞,读操作返回的结果可能不是最新的,适合读多写少的场景。

image-20230917173624498

  (2)CopyOnWriteArrayList读取操作:

  访问器的读取操作没有任何同步控制和锁操作,理由是内部数组array不会发生修改,只会被另一个array替换,因此可以保证数据安全。

//操作内存的引用 
private transient volatile Object[] array;
public E get(int index) {return get(getArray(), index);
}
//获取元素
private E get(Object[] a, int index) {return (E) a[index];
}
//返回操作内存
final Object[] getArray() {return array;
}

  (3)CopyOnWriteArrayList写入操作

  CopyOnWriteArrayList的写入操作add()方法在执行时加了独占锁以确保只能有一个线程进行写入操作,避免多线程写的时候会复制出多个副本。

  这块给出的都是部分源代码,API中重载方法很多

 public boolean add(E e) {final ReentrantLock lock = this.lock;lock.lock();	//加锁try {Object[] elements = getArray();int len = elements.length;//复制新数组Object[] newElements = Arrays.copyOf(elements, len + 1);newElements[len] = e;setArray(newElements);return true;} finally {lock.unlock();	//释放锁}}final void setArray(Object[] a) {array = a;}

  从add()操作可以看出,在每次进行添加操作时,CopyOnWriteArrayList底层都是重新复制一份数组,再往新的数组中添加新元素,待添加完了,再将新的array引用指向新的数组。当add()操作完成后,array的引用就已经指向另一个存储空间了。

   既然每次添加元素的时候都会重新复制一份,那就增加了内存的开销,如果容器的写操作比较频繁,那么其开销就比较大。所以,在实际应用中,CopyOnWriteArrayList并不适合进行添加操作。但是在并发场景下,迭代操作比较频繁,CopyOnWriteArrayList就是一个不错的选择。

  (4)CopyOnWriteArrayList迭代器实现

  CopyOnWriteArrayList有自己的迭代器,该迭代器不会检查修改状态,也无需检查状态。因为被迭代的array数组可以说是只读的,不会有其他线程能够修改它。

 static final class COWIterator<E> implements ListIterator<E> {//数组的快照(snapshot)private final Object[] snapshot;/** Index of element to be returned by subsequent call to next.  */private int cursor;private COWIterator(Object[] elements, int initialCursor) {cursor = initialCursor;snapshot = elements;}//下一个元素public boolean hasNext() {return cursor < snapshot.length;}}

  迭代器的快照成员会在构造迭代器的时候使用CopyOnWriteArrayList的array成员去初始化,具体如下:

//获取迭代器 
public Iterator<E> iterator() {return new COWIterator<E>(getArray(), 0);}
//返回操作内存final Object[] getArray() {return array;}

  总结:

  1.CopyOnWriteArrayList的优点

  读取、遍历操作不需要同步,速度会非常快。所以CopyOnWriteArrayList适用于读操作多、写操作相对较少的场景(读多写少),比如可以在进行“黑名单”拦截时使用CopyOnWriteArrayList。

  2.CopyOnWriteArrayListReentrantReadWriteLock的比较

  CopyOnWriteArrayList和ReentrantReadWriteLock读写锁的思想非常类似,即读读共享、写写互斥、读写互斥、写读互斥。但是前者相比后者更进一步:为了将读取的性能发挥到极致,CopyOnWriteArrayList读取是完全不用加锁的,而且写入也不会阻塞读取操作,只有写入和写入之间需要进行同步等待,读操作的性能得到大幅提升

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/166511.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据可视化与GraphQL:利用Apollo创建仪表盘

前言 「作者主页」&#xff1a;雪碧有白泡泡 「个人网站」&#xff1a;雪碧的个人网站 「推荐专栏」&#xff1a; ★java一站式服务 ★ ★ React从入门到精通★ ★前端炫酷代码分享 ★ ★ 从0到英雄&#xff0c;vue成神之路★ ★ uniapp-从构建到提升★ ★ 从0到英雄&#xff…

Defender Antivirus占用资源怎么禁止

前言 有时Defender Antivirus 突然磁盘IO很高。导致机器卡得很&#xff0c;开发代码很不方便&#xff0c;本文就介绍如何禁用这个服务。2f089809-2c6f-4fb7-86f5-8b5cbca8bd0d 操作 下载Defender Control https://www.sordum.org/9480/defender-control-v2-1/ 这是当前的最…

EtherCAT主站SDO写报文抓包分析

0 工具准备 1.EtherCAT主站 2.EtherCAT从站&#xff08;本文使用步进电机驱动器&#xff09; 3.Wireshark1 抓包分析 1.1 报文总览 本文设置从站1的对象字典&#xff0c;设置对象字典主索引为0x2000&#xff0c;子索引为0x00&#xff0c;设置值为1500。主站通过发送SDO写报文…

openGauss学习笔记-104 openGauss 数据库管理-管理数据库安全-客户端接入之SSL证书管理-证书替换

文章目录 openGauss学习笔记-104 openGauss 数据库管理-管理数据库安全-客户端接入之SSL证书管理-证书替换104.1 操作场景104.2 前提条件104.3 注意事项104.4 操作步骤 openGauss学习笔记-104 openGauss 数据库管理-管理数据库安全-客户端接入之SSL证书管理-证书替换 openGaus…

【RNA structures】RNA转录的重构和前沿测序技术

文章目录 RNA转录重建1 先简单介绍一下测序相关技术2 Map to Genome Methods2.1 Step1 Mapping reads to the genome2.2 Step2 Deal with spliced reads2.3 Step 3 Resolve individual transcripts and their expression levels 3 Align-de-novo approaches3.1 Step 1: Generat…

二维码智慧门牌管理系统升级解决方案:高效、便捷、安全的外业数据管理方法

文章目录 前言一、背景与需求二、升级解决方案三、方案优势 前言 在当今的信息化社会&#xff0c;数据管理的重要性日益凸显。尤其对于像二维码智慧门牌管理系统这样的复杂系统&#xff0c;如何实现高效、便捷、安全的数据管理&#xff0c;成为了系统升级的重要议题。本文将详…

大模型相关基础(基于李沐)

InstructGPT 介绍 ChatGPT用到的技术和InstructGPT一样的技术&#xff0c;区别是InstructGPT是在GPT3上微调&#xff0c;ChatGPT是在GPT3.5上微调。 InstructGPT论文发表在2022年3月4号&#xff0c;标题是《训练语言模型使得它们能够服从人类的一些指示》。 标题解释&#…

[深入浅出AutoSAR] SWC 设计与应用

依AutoSAR及经验辛苦整理&#xff0c;原创保护&#xff0c;禁止转载。 专栏 《深入浅出AutoSAR》 全文 3100 字&#xff0c; 包含 1. SWC 概念 2. 数据类型&#xff08;Datatype&#xff09; 3. 端口&#xff08;Port&#xff09; 4. 端口接口&#xff08;Portinterface&…

性能压测工具 —— wrk

一般我们压测的时候&#xff0c;需要了解衡量系统性能的一些参数指标&#xff0c;比如。 1、性能指标简介 1.1 延迟 简单易懂。green:一般指响应时间 95线&#xff1a;P95。平均100%的请求中95%已经响应的时间 99线&#xff1a;P99。平均100%的请求中99%已经响应的时间 平…

51单片机的时钟系统

1.简介 51内置的时钟系统可以用来计时&#xff0c;与主程序分割开来&#xff0c;在计时过程中不会终端主程序&#xff0c;还可以通过开启时钟中断来执行相应的操作。 2.单片机工作方式 单片机内部有两个十六位的定时器T0和T1。每个定时器有两种工作方式选择&#xff0c;分别…

Python 机器学习入门之K-Means聚类算法

系列文章目录 第一章 Python 机器学习入门之线性回归 K-Means聚类算法 系列文章目录前言一、K-Means简介1、定义2、例子3、K-Means与KNN 二、 K-Means实现1、步骤2、优化2.1 初始化优化之K-Means2.2 距离优化之elkan K-Means 三、优缺点1、优点2、缺点 前言 学完K近邻算法&a…

【深度学习】数据集最常见的问题及其解决方案

简介 如果您还没有听过&#xff0c;请告诉您一个事实&#xff0c;作为一名数据科学家&#xff0c;您应该始终站在一个角落跟你说&#xff1a;“你的结果与你的数据一样好。” 尝试通过提高模型能力来弥补糟糕的数据是许多人会犯的错误。这相当于你因为原来的汽车使用了劣质汽…

【疯狂Java讲义】Java学习记录(IO流)

IO流 IO&#xff1a;Input / Output 完成输入 / 输出 应用程序运行时——数据在内存中 ←→ 把数据写入硬盘&#xff08;磁带&#xff09; 内存中的数据不可持久保存 输入&#xff1a;从外部存储器&#xff08;硬盘、磁带、U盘&#…

【C语言】写入访问权限冲突

访问权限冲突 一、引入&#xff1a;情景再现二、出现问题的原因三、解决问题的方法四、问题解决五、结果修正 一、引入&#xff1a;情景再现 想在结构体堆的数组中for循环读入已经有的一个数组 int main() {int a[] { 2,3,5,7,4,6,8,65,100,70,32,50,60 };int num sizeof(a…

订单 延后自动关闭,五种方案优雅搞定!

前 言 在开发中&#xff0c;往往会遇到一些关于延时任务的需求。例如 生成订单30分钟未支付&#xff0c;则自动取消生成订单60秒后,给用户发短信 对上述的任务&#xff0c;我们给一个专业的名字来形容&#xff0c;那就是延时任务 。那么这里就会产生一个问题&#xff0c;这个…

何为心理承受能力?如何提高心理承受能力?

心理承受能力&#xff0c;也可以理解为人的抗压能力&#xff0c;指的是承受压力&#xff0c;承受逆境的能力。人的一生其实就是在不断的解决问题&#xff0c;见招拆招&#xff0c;遇到问题解决问题&#xff0c;在我们不断学习和锻炼的过程中&#xff0c;提高了我们解决问题的效…

nginx常见报错及解决acme.sh给Nginx配置SSL证书

问题排查&#xff1a; nginx -t //检查配置是否正确只要返回ok就说明配置没问题。 Nginx报错Failed to restart nginx.service: Unit not found 解决方法&#xff1a; 1、在根目录下执行 vim /etc/init.d/nginx2、插入以下代码 #!/bin/sh # nginx - this script starts …

【网络爬虫】2 初探网络爬虫

爬虫练手 把豆瓣的书评list页爬取下来&#xff0c;并获取其书名&#xff0c;和detail的连接地址 豆瓣的书评list的url地址&#xff0c; start1,2,3,4…是其地址页 https://book.douban.com/top250?start1 f12 观察其html结构 思路 按照找到的list的页面地址: 1.获取list页…

15 Transformer 框架概述

整体框架 机器翻译流程&#xff08;Transformer&#xff09; 通过机器翻译来做解释 给一个输入&#xff0c;给出一个输出&#xff08;输出是输入的翻译的结果&#xff09; “我是一个学生” --》&#xff08;通过 Transformer&#xff09; I am a student 流程 1 编码器和解…

最详细STM32,cubeMX外部中断

这篇文章将详细介绍 cubeMX外部中断的配置&#xff0c;实现过程。 文章目录 前言一、外部中断的基础知识。二、cubeMX 配置外部中断三、自动生成的代码解析四、代码实现。总结 前言 实验开发板&#xff1a;STM32F103C8T6。所需软件&#xff1a;keil5 &#xff0c; cubeMX 。实…