前言:Hello大家好,我是小哥谈。损失函数(loss function)是机器学习中用来衡量模型预测值与真实值之间差异的函数。它用于度量模型在训练过程中的性能,以便优化模型参数。在训练过程中,损失函数会根据模型的预测结果和真实标签计算出一个标量值,代表了模型预测的错误程度。通过最小化损失函数,可以使模型的预测结果与真实值之间的差距变小,从而提升模型的性能。本节课就简单介绍一下常见的IoU损失函数并重点讲解如何去更换损失函数!🌈
前期回顾:
前言:Hello大家好,我是小哥谈。损失函数(loss function)是机器学习中用来衡量模型预测值与真实值之间差异的函数。它用于度量模型在训练过程中的性能,以便优化模型参数。在训练过程中,损失函数会根据模型的预测结果和真实标签计算出一个标量值,代表了模型预测的错误程度。通过最小化损失函数,可以使模型的预测结果与真实值之间的差距变小,从而提升模型的性能。本节课就简单介绍一下常见的IoU损失函数并重点讲解如何去更换损失函数!🌈
前期回顾:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/166588.html
如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!