非侵入式负荷检测与分解:电力数据挖掘新视角

电力数据挖掘

  • 概述
  • 案例背景
  • 分析目标
  • 分析过程
  • 数据准备
    • 数据探索
    • 缺失值处理
  • 属性构造
    • 设备数据
    • 周波数据
    • 模型训练
  • 性能度量
  • 推荐阅读

在这里插入图片描述

主页传送门:📀 传送

概述


  摘要:本案例将根据已收集到的电力数据,深度挖掘各电力设备的电流、电压和功率等情况,分析各电力设备的实际用电量,进而为电力公司制定电能能源策略提供一定的参考依据。更多详细内容请参考《Python数据挖掘:入门进阶与实用案例分析》一书。

案例背景

  为了更好地监测用电设备的能耗情况,电力分项计量技术随之诞生。电力分项计量对于电力公司准确预测电力负荷、科学制定电网调度方案、提高电力系统稳定性和可靠性有着重要意义。对用户而言,电力分项计量可以帮助用户了解用电设备的使用情况,提高用户的节能意识,促进科学合理用电。

在这里插入图片描述

分析目标


  本案例根据非侵入式负荷检测与分解的电力数据挖掘的背景和业务需求,需要实现的目标如下:

  • 分析每个用电设备的运行属性。

  • 构建设备判别属性库。

  • 利用K最近邻模型,实现从整条线路中“分解”出每个用电设备的独立用电数据。

分析过程


在这里插入图片描述

数据准备


数据探索


  在本案例的电力数据挖掘分析中,不会涉及操作记录数据。因此,此处主要获取设备数据、周波数据和谐波数据。在获取数据后,由于数据表较多,每个表的属性也较多,所以需要对数据进行数据探索分析。在数据探索过程中主要根据原始数据特点,对每个设备的不同属性对应的数据进行可视化,得到的部分结果如图1~图3所示。

无功功率和总无功功率

在这里插入图片描述

电流轨迹:
在这里插入图片描述

电压轨迹:
在这里插入图片描述

可视化数据代码示例:

import pandas as pdimport matplotlib.pyplot as pltimport osfilename = os.listdir('../data/附件1')  # 得到文件夹下的所有文件名称n_filename = len(filename)  # 给各设备的数据添加操作信息,画出各属性轨迹图并保存def fun(a):save_name = ['YD1', 'YD10', 'YD11', 'YD2', 'YD3', 'YD4','YD5', 'YD6', 'YD7', 'YD8', 'YD9']plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号for i in range(a):Sb = pd.read_excel('../data/附件1/' + filename[i], '设备数据', index_col = None)Xb = pd.read_excel('../data/附件1/' + filename[i], '谐波数据', index_col = None)Zb = pd.read_excel('../data/附件1/' + filename[i], '周波数据', index_col = None)# 电流轨迹图plt.plot(Sb['IC'])plt.title(save_name[i] + '-IC')plt.ylabel('电流(0.001A)')plt.show()# 电压轨迹图lt.plot(Sb['UC'])plt.title(save_name[i] + '-UC')plt.ylabel('电压(0.1V)')plt.show()# 有功功率和总有功功率plt.plot(Sb[['PC', 'P']])plt.title(save_name[i] + '-P')plt.ylabel('有功功率(0.0001kW)')plt.show()# 无功功率和总无功功率plt.plot(Sb[['QC', 'Q']])plt.title(save_name[i] + '-Q')plt.ylabel('无功功率(0.0001kVar)')plt.show()# 功率因数和总功率因数plt.plot(Sb[['PFC', 'PF']])plt.title(save_name[i] + '-PF')plt.ylabel('功率因数(%)')plt.show()# 谐波电压plt.plot(Xb.loc[:, 'UC02':].T)plt.title(save_name[i] + '-谐波电压')plt.show()# 周波数据plt.plot(Zb.loc[:, 'IC001':].T)plt.title(save_name[i] + '-周波数据')plt.show()fun(n_filename)

缺失值处理


通过数据探索,发现数据中部分“time”属性存在缺失值,需要对这部分缺失值进行处理。由于每份数据中“time”属性的缺失时间段长不同,所以需要进行不同的处理。对于每个设备数据中具有较大缺失时间段的数据进行删除处理,对于具有较小缺失时间段的数据使用前一个值进行插补。

在进行缺失值处理之前,需要将训练数据中所有设备数据中的设备数据表、周波数据表、谐波数据表和操作记录表,以及测试数据中所有设备数据中的设备数据表、周波数据表和谐波数据表都提取出来,作为独立的数据文件,生成的部分文件如图4所示。

在这里插入图片描述

提取数据文件代码示例:

# 将xlsx文件转化为CSV文件import globimport pandas as pdimport mathdef file_transform(xls):print('共发现%s个xlsx文件' % len(glob.glob(xls)))print('正在处理............')for file in glob.glob(xls):  # 循环读取同文件夹下的xlsx文件combine1 = pd.read_excel(file, index_col=0, sheet_name=None)for key in combine1:combine1[key].to_csv('../tmp/' + file[8: -5] + key + '.csv', encoding='utf-8')print('处理完成')xls_list = ['../data/附件1/*.xlsx', '../data/附件2/*.xlsx']file_transform(xls_list[0])  # 处理训练数据file_transform(xls_list[1])  # 处理测试数据

提取数据文件完成后,对提取的数据文件进行缺失值处理,处理后生成的部分文件如图5所示。

在这里插入图片描述
缺失值处理代码示例:

# 对每个数据文件中较大缺失时间点数据进行删除处理,较小缺失时间点数据进行前值替补def missing_data(evi):print('共发现%s个CSV文件' % len(glob.glob(evi)))for j in glob.glob(evi):fr = pd.read_csv(j, header=0, encoding='gbk')fr['time'] = pd.to_datetime(fr['time'])helper = pd.DataFrame({'time': pd.date_range(fr['time'].min(), fr['time'].max(), freq='S')})fr = pd.merge(fr, helper, on='time', how='outer').sort_values('time')fr = fr.reset_index(drop=True)frame = pd.DataFrame()for g in range(0, len(list(fr['time'])) - 1):if math.isnan(fr.iloc[:, 1][g + 1]) and math.isnan(fr.iloc[:, 1][g]):continueelse:scop = pd.Series(fr.loc[g])frame = pd.concat([frame, scop], axis=1)frame = pd.DataFrame(frame.values.T, index=frame.columns, columns=frame.index)frames = frame.fillna(method='ffill')frames.to_csv(j[:-4] + '1.csv', index=False, encoding='utf-8')print('处理完成')evi_list = ['../tmp/附件1/*数据.csv', '../tmp/附件2/*数据.csv']missing_data(evi_list[0])  # 处理训练数据missing_data(evi_list[1])  # 处理测试数据

属性构造


虽然在数据准备过程中对属性进行了初步处理,但是引入的属性太多,而且这些属性之间存在重复的信息。为了保留重要的属性,建立精确、简单的模型,需要对原始属性进一步筛选与构造。

设备数据


在数据探索过程中发现,不同设备的无功功率、总无功功率、有功功率、总有功功率、功率因数和总功率因数差别很大,具有较高的区分度,故本案例选择无功功率、总无功功率、有功功率、总有功功率、功率因数和总功率因数作为设备数据的属性构建判别属性库。

处理好缺失值后,每个设备的数据都由一张表变为了多张表,所以需要将相同类型的数据表合并到一张表中,如将所有设备的设备数据表合并到一张表当中。同时,因为缺失值处理的其中一种方式是使用前一个值进行插补,所以产生了相同的记录,需要对重复出现的记录进行处理,处理后生成的数据表如表1所示。
在这里插入图片描述
合并且去重设备数据代码示例:

import globimport pandas as pdimport os# 合并11个设备数据及处理合并中重复的数据def combined_equipment(csv_name):# 合并print('共发现%s个CSV文件' % len(glob.glob(csv_name)))print('正在处理............')for i in glob.glob(csv_name):  # 循环读取同文件夹下的CSV文件fr = open(i, 'rb').read()file_path = os.path.split(i)with open(file_path[0] + '/device_combine.csv', 'ab') as f:f.write(fr)print('合并完毕!')# 去重df = pd.read_csv(file_path[0] + '/device_combine.csv', header=None, encoding='utf-8')datalist = df.drop_duplicates()datalist.to_csv(file_path[0] + '/device_combine.csv', index=False, header=0)print('去重完成')csv_list = ['../tmp/附件1/*设备数据1.csv', '../tmp/附件2/*设备数据1.csv']combined_equipment(csv_list[0])  # 处理训练数据combined_equipment(csv_list[1])  # 处理测试数据

周波数据


在数据探索过程中发现,周波数据中的电流随着时间的变化有较大的起伏,不同设备的周波数据中的电流绘制出来的折线图的起伏不尽相同,具有明显的差异,故本案例选择波峰和波谷作为周波数据的属性构建判别属性库。

由于原始的周波数据中并未存在电流的波峰和波谷两个属性,所以需要进行属性构建,构建生成的数据表如表2所示。

在这里插入图片描述
构建周波数据中的属性代码示例:

# 求取周波数据中电流的波峰和波谷作为属性参数import globimport pandas as pdfrom sklearn.cluster import KMeansimport osdef cycle(cycle_file):for file in glob.glob(cycle_file):cycle_YD = pd.read_csv(file, header=0, encoding='utf-8')cycle_YD1 = cycle_YD.iloc[:, 0:128]models = []for types in range(0, len(cycle_YD1)):model = KMeans(n_clusters=2, random_state=10)model.fit(pd.DataFrame(cycle_YD1.iloc[types, 1:]))  # 除时间以外的所有列models.append(model)# 相同状态间平稳求均值mean = pd.DataFrame()for model in models:r = pd.DataFrame(model.cluster_centers_, )  # 找出聚类中心r = r.sort_values(axis=0, ascending=True, by=[0])mean = pd.concat([mean, r.reset_index(drop=True)], axis=1)mean = pd.DataFrame(mean.values.T, index=mean.columns, columns=mean.index)mean.columns = ['波谷', '波峰']mean.index = list(cycle_YD['time'])mean.to_csv(file[:-9] + '波谷波峰.csv', index=False, encoding='gbk ')cycle_file = ['../tmp/附件1/*周波数据1.csv', '../tmp/附件2/*周波数据1.csv']cycle(cycle_file[0])  # 处理训练数据cycle(cycle_file[1])  # 处理测试数据# 合并周波的波峰波谷文件def merge_cycle(cycles_file):means = pd.DataFrame()for files in glob.glob(cycles_file):mean0 = pd.read_csv(files, header=0, encoding='gbk')means = pd.concat([means, mean0])file_path = os.path.split(glob.glob(cycles_file)[0])means.to_csv(file_path[0] + '/zuhe.csv', index=False, encoding='gbk')print('合并完成')cycles_file = ['../tmp/附件1/*波谷波峰.csv', '../tmp/附件2/*波谷波峰.csv']merge_cycle(cycles_file[0])  # 训练数据merge_cycle(cycles_file[1])  # 测试数据

模型训练


在判别设备种类时,选择K最近邻模型进行判别,利用属性构建而成的属性库训练模型,然后利用训练好的模型对设备1和设备2进行判别。构建判别模型并对设备种类进行判别,如代码清单6所示。

建立判别模型并对设备种类进行判别代码示例:

import globimport pandas as pdfrom sklearn import neighborsimport pickleimport os# 模型训练def model(test_files, test_devices):# 训练集zuhe = pd.read_csv('../tmp/附件1/zuhe.csv', header=0, encoding='gbk')device_combine = pd.read_csv('../tmp/附件1/device_combine.csv', header=0, encoding='gbk')train = pd.concat([zuhe, device_combine], axis=1)train.index = train['time'].tolist()  # 把“time”列设为索引train = train.drop(['PC', 'QC', 'PFC', 'time'], axis=1)train.to_csv('../tmp/' + 'train.csv', index=False, encoding='gbk')# 测试集for test_file, test_device in zip(test_files, test_devices):test_bofeng = pd.read_csv(test_file, header=0, encoding='gbk')test_devi = pd.read_csv(test_device, header=0, encoding='gbk')test = pd.concat([test_bofeng, test_devi], axis=1)test.index = test['time'].tolist()  # 把“time”列设为索引test = test.drop(['PC', 'QC', 'PFC', 'time'], axis=1)# K最近邻clf = neighbors.KNeighborsClassifier(n_neighbors=6, algorithm='auto')clf.fit(train.drop(['label'], axis=1), train['label'])predicted = clf.predict(test.drop(['label'], axis=1))predicted = pd.DataFrame(predicted)file_path = os.path.split(test_file)[1]test.to_csv('../tmp/' + file_path[:3] + 'test.csv', encoding='gbk')predicted.to_csv('../tmp/' + file_path[:3] + 'predicted.csv', index=False, encoding='gbk')with open('../tmp/' + file_path[:3] + 'model.pkl', 'ab') as pickle_file:pickle.dump(clf, pickle_file)print(clf)model(glob.glob('../tmp/附件2/*波谷波峰.csv'),glob.glob('../tmp/附件2/*设备数据1.csv'))

性能度量


根据代码清单6的设备判别结果,对模型进行模型评估,得到的结果如下
在这里插入图片描述
混淆矩阵如图7所示:
在这里插入图片描述
ROC曲线如图8所示 :
在这里插入图片描述
模型评估代码示例:

import globimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as snsfrom sklearn import metricsfrom sklearn.preprocessing import label_binarizeimport osimport pickle# 模型评估def model_evaluation(model_file, test_csv, predicted_csv):for clf, test, predicted in zip(model_file, test_csv, predicted_csv):with open(clf, 'rb') as pickle_file:clf = pickle.load(pickle_file)test = pd.read_csv(test, header=0, encoding='gbk')predicted = pd.read_csv(predicted, header=0, encoding='gbk')test.columns = ['time', '波谷', '波峰', 'IC', 'UC', 'P', 'Q', 'PF', 'label']print('模型分类准确度:', clf.score(test.drop(['label', 'time'], axis=1), test['label']))print('模型评估报告:\n', metrics.classification_report(test['label'], predicted))confusion_matrix0 = metrics.confusion_matrix(test['label'], predicted)confusion_matrix = pd.DataFrame(confusion_matrix0)class_names = list(set(test['label']))tick_marks = range(len(class_names))sns.heatmap(confusion_matrix, annot=True, cmap='YlGnBu', fmt='g')plt.xticks(tick_marks, class_names)plt.yticks(tick_marks, class_names)plt.tight_layout()plt.title('混淆矩阵')plt.ylabel('真实标签')plt.xlabel('预测标签')plt.show()y_binarize = label_binarize(test['label'], classes=class_names)predicted = label_binarize(predicted, classes=class_names)fpr, tpr, thresholds = metrics.roc_curve(y_binarize.ravel(), predicted.ravel())auc = metrics.auc(fpr, tpr)print('计算auc:', auc)  # 绘图plt.figure(figsize=(8, 4))lw = 2plt.plot(fpr, tpr, label='area = %0.2f' % auc)plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')plt.fill_between(fpr, tpr, alpha=0.2, color='b')plt.xlim([0.0, 1.0])plt.ylim([0.0, 1.05])plt.xlabel('1-特异性')plt.ylabel('灵敏度')plt.title('ROC曲线')plt.legend(loc='lower right')plt.show()model_evaluation(glob.glob('../tmp/*model.pkl'),glob.glob('../tmp/*test.csv'),glob.glob('../tmp/*predicted.csv'))

根据分析目标,需要计算实时用电量。实时用电量计算的是瞬时的用电器的电流、电压和时间的乘积,公式如下。
在这里插入图片描述
其中,为实时用电量,单位是0.001kWh。为功率,单位为W。

实时用电量计算,得到的实时用电量如表3所示。

在这里插入图片描述
计算实时用电量

# 计算实时用电量并输出状态表def cw(test_csv, predicted_csv, test_devices):for test, predicted, test_device in zip(test_csv, predicted_csv, test_devices):# 划分预测出的时刻表test = pd.read_csv(test, header=0, encoding='gbk')test.columns = ['time', '波谷', '波峰', 'IC', 'UC', 'P', 'Q', 'PF', 'label']test['time'] = pd.to_datetime(test['time'])test.index = test['time']predicteds = pd.read_csv(predicted, header=0, encoding='gbk')predicteds.columns = ['label']indexes = []class_names = list(set(test['label']))for j in class_names:index = list(predicteds.index[predicteds['label'] == j])indexes.append(index)# 取出首位序号及时间点from itertools import groupby  # 连续数字dif_indexs = []time_indexes = []info_lists = pd.DataFrame()for y, z in zip(indexes, class_names):dif_index = []fun = lambda x: x[1] - x[0]for k, g in groupby(enumerate(y), fun):dif_list = [j for i, j in g]  # 连续数字的列表if len(dif_list) > 1:scop = min(dif_list)  # 选取连续数字范围中的第一个else:scop = dif_list[0   ]dif_index.append(scop)time_index = list(test.iloc[dif_index, :].index)time_indexes.append(time_index)info_list = pd.DataFrame({'时间': time_index, 'model_设备状态': [z] * len(time_index)})dif_indexs.append(dif_index)info_lists = pd.concat([info_lists, info_list])# 计算实时用电量并保存状态表test_devi = pd.read_csv(test_device, header=0, encoding='gbk')test_devi['time'] = pd.to_datetime(test_devi['time'])test_devi['实时用电量'] = test_devi['P'] * 100 / 3600info_lists = info_lists.merge(test_devi[['time', '实时用电量']],how='inner', left_on='时间', right_on='time')info_lists = info_lists.sort_values(by=['时间'], ascending=True)info_lists = info_lists.drop(['time'], axis=1)file_path = os.path.split(test_device)[1]info_lists.to_csv('../tmp/' + file_path[:3] + '状态表.csv', index=False, encoding='gbk')print(info_lists)cw(glob.glob('../tmp/*test.csv'),glob.glob('../tmp/*predicted.csv'),glob.glob('../tmp/附件2/*设备数据1.csv'))

推荐阅读


在这里插入图片描述
正版链接:https://item.jd.com/13814157.html

《Python数据挖掘:入门、进阶与实用案例分析》是一本以项目实战案例为驱动的数据挖掘著作,它能帮助完全没有Python编程基础和数据挖掘基础的读者快速掌握Python数据挖掘的技术、流程与方法。在写作方式上,与传统的“理论与实践结合”的入门书不同,它以数据挖掘领域的知名赛事“泰迪杯”数据挖掘挑战赛(已举办10届)和“泰迪杯”数据分析技能赛(已举办5届)(累计1500余所高校的10余万师生参赛)为依托,精选了11个经典赛题,将Python编程知识、数据挖掘知识和行业知识三者融合,让读者在实践中快速掌握电商、教育、交通、传媒、电力、旅游、制造等7大行业的数据挖掘方法。

本书不仅适用于零基础的读者自学,还适用于教师教学,为了帮助读者更加高效地掌握本书的内容,本书提供了以下10项附加价值:
(1)建模平台:提供一站式大数据挖掘建模平台,免配置,包含大量案例工程,边练边学,告别纸上谈兵
(2)视频讲解:提供不少于600分钟Python编程和数据挖掘相关教学视频,边看边学,快速收获经验值
(3)精选习题:精心挑选不少于60道数据挖掘练习题,并提供详细解答,边学边练,检查知识盲区
(4)作者答疑:学习过程中有任何问题,通过“树洞”小程序,纸书拍照,一键发给作者,边问边学,事半功倍
(5)数据文件:提供各个案例配套的数据文件,与工程实践结合,开箱即用,增强实操性
(6)程序代码:提供书中代码的电子文件及相关工具的安装包,代码导入平台即可运行,学习效果立竿见影
(7)教学课件:提供配套的PPT课件,使用本书作为教材的老师可以申请,节省备课时间
(8)模型服务:提供不少于10个数据挖掘模型,模型提供完整的案例实现过程,助力提升数据挖掘实践能力
(9)教学平台:泰迪科技为本书提供的附加资源提供一站式数据化教学平台,附有详细操作指南,边看边学边练,节省时间
(10)就业推荐:提供大量就业推荐机会,与1500+企业合作,包含华为、京东、美的等知名企业

通过学习本书,读者可以理解数据挖掘的原理,迅速掌握大数据技术的相关操作,为后续数据分析、数据挖掘、深度学习的实践及竞赛打下良好的技术基础。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/171406.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

​Vue2【双向数据绑定/响应式原理】

目录 初始化 initProps():父组件传的 props 列表,proxy() 把属性代理到当前实例上 vm._props.xx 变成 vm.xx initData():判断data和props、methods是否重名,proxy() 把属性代理到当前实例上 this.xx observe():给…

Linux设置命令开机自动执行

~/.bash_profile完整的命令占用一行,开机自动执行

前端工程化面试题及答案【集合】

前言: 欢迎浏览和关注本专栏《 前端就业宝典 》, 不管是扭螺丝还是造火箭, 多学点知识总没错。 这个专栏是扭螺丝之上要造火箭级别的知识,会给前端工作学习的小伙伴带来意想不到的帮助。 本专栏将前端知识拆整为零,主要…

大语言模型(LLM)综述(四):如何适应预训练后的大语言模型

A Survey of Large Language Models 前言5. ADAPTATION OF LLMS5.1 指导调优5.1.1 格式化实例构建5.1.2 指导调优策略5.1.3 指导调优的效果5.1.4 指导调优的实证分析 5.2 对齐调优5.2.1 Alignment的背景和标准5.2.2 收集人类反馈5.2.3 根据人类反馈进行强化学习5.2.4 无需 RLHF…

分享8个分布式Kafka的使用场景

Kafka 最初是为海量日志处理而构建的。它保留消息直到过期,并让消费者按照自己的节奏提取消息。与它的前辈不同,Kafka 不仅仅是一个消息队列,它还是一个适用于各种情况的开源事件流平台。 1. 日志处理与分析 下图显示了典型的 ELK&#xff0…

Java练习题2020 -1

统计1到N的整数中&#xff0c;被A除余A-1的偶数的个数 输入说明&#xff1a;整数 N(N<10000), A, (A 输出说明&#xff1a;符合条件的数的个数 输入样例&#xff1a;10 3 输出样例&#xff1a;2 (说明&#xff1a;样例中符合条件的2个数是 2、8) import java.util.Scanner;p…

【开源】基于SpringBoot的农村物流配送系统的设计和实现

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 系统登录、注册界面2.2 系统功能2.2.1 快递信息管理&#xff1a;2.2.2 位置信息管理&#xff1a;2.2.3 配送人员分配&#xff1a;2.2.4 路线规划&#xff1a;2.2.5 个人中心&#xff1a;2.2.6 退换快递处理&#xff1a;…

基于nodejs+vue全国公考岗位及报考人数分析

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性&#xff1a;…

【spark客户端】Spark SQL CLI详解:怎么执行sql文件、注释怎么写,支持的文件路径协议、交互式模式使用细节

文章目录 一. Spark SQL Command Line Options(命令行参数)二. The hiverc File1. without the -i2. .hiverc 介绍 三. 支持的路径协议四. 支持的注释类型五. Spark SQL CLI交互式命令六. Examples1. running a query from the command line2. setting Hive configuration vari…

PyCharm 安装 cx_Oracle 失败

我在PyCharm的终端用 pip安装cx_Oracle失败&#xff0c;报错情况如下&#xff1a; ERROR: Could not build wheels for cx_Oracle, which is required to install pyproject.toml-based projects 出错原因&#xff1a; python 的版本太高了&#xff0c;我的是3.11版本的&…

【DOCKER】

Docker 出现&#xff1a; 解决了运行环境和配置问题的软件容器。 方便做持续集成并有助于整体发布的容器虚拟化技术。 面试题&#xff1a; 容器和虚拟机比较&#xff1f; 区别&#xff1a; 1.Docker的三件套 1.镜像&#xff1a; 2.容器 3.仓库 2. 基础架构图 2.…

React JSX常用语法总结

React JSX语法 什么是React JSX JSX&#xff08;javascript xml&#xff09; 就是JavaScript和XML结合的一种格式&#xff0c;是JavaScript的语法扩展&#xff0c;只要把HTML代码写在JS中&#xff0c;就为JSX。用于动态构建用户界面的Javascript库&#xff0c;发送请求获取数据…

♥ uniapp 环境搭建

♥ uniapp 环境搭建 开发uniapp需要用到的工具有两个&#xff1a; 1、用到的平台和地址&#xff1a; 需要了解的几个平台以及地址&#xff1a; &#xff08;1&#xff09;微信公众平台 https://mp.weixin.qq.com/ &#xff08;2&#xff09;微信开发文档 https://develo…

TVRNet网络PyTorch实现

文章目录 文章地址网络各层结构代码实现 文章地址 An End-to-End Traffic Visibility Regression Algorithm文章通过训练搜集得到的真实道路图像数据集&#xff08;Actual Road dense image Dataset, ARD&#xff09;&#xff0c;通过专业的能见度计和多人标注&#xff0c;获得…

Matter.js 插件:matter-wrap(世界是圆的)

本文简介 点赞 关注 收藏 学会了 记得以前看爆笑校园里有一集讲到&#xff0c;一个人对着前面开了一枪&#xff0c;过了一阵子弹打中他自己的后脑勺。作者想通过这个冷笑话告诉大家一件事&#xff1a;地球是圆的。 在 Matter.js 世界里&#xff0c;默认是没有边界的&#…

【Leetcode】【每日一题】【中等】1465. 切割后面积最大的蛋糕

力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台备战技术面试&#xff1f;力扣提供海量技术面试资源&#xff0c;帮助你高效提升编程技能&#xff0c;轻松拿下世界 IT 名企 Dream Offer。https://leetcode.cn/problems/maximum-area-of-a-piece-of-cak…

模拟算法及其优化

第一题 替换所有问号 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 class Solution { public:string modifyString(string s) {string ret;for(int i0;i<s.size();i){if(i0){if(s[i]?&&i1<s.size()){for(char aa;a<z;a){if(a!s…

Codeforces Round 905 (Div. 3)ABCDEF

Codeforces Round 905 (Div. 3) 目录 A. Morning题意思路核心代码 B. Chemistry题意思路核心代码 C. Raspberries题意思路核心代码 D. In Love题意思路核心代码 E. Look Back题意思路核心代码 A. Morning 题意 从一开始&#xff0c;每一次操作可以选择当前的数字打印或者是移…

Jenkins入门级安装部署

前言 Jenkins是一个开源软件项目&#xff0c;是基于Java开发的一种持续集成工具&#xff0c;用于监控持续重复的工作&#xff0c;旨在提供一个开放易用的软件平台&#xff0c;使软件项目可以进行持续集成。通常&#xff0c;项目中常用Jenkins作为编译打包项目的工具&#xff0…

企业内部IM即时聊天软件WorkPlus,自主可控的信创即时通讯IM

随着国家的发展发展&#xff0c;很多技术因为一些原因越来越受制于人&#xff0c;尤其是上游核心技术。为了解决这个问题&#xff0c;我国明确了“数字中国”建设战略&#xff0c;强调“自主”、“安全”、“可控”&#xff0c;不被“卡脖子”。在信创产业链的各环节中&#xf…