持续进化,快速转录,Faster-Whisper对视频进行双语字幕转录实践(Python3.10)

Faster-Whisper是Whisper开源后的第三方进化版本,它对原始的 Whisper 模型结构进行了改进和优化。这包括减少模型的层数、减少参数量、简化模型结构等,从而减少了计算量和内存消耗,提高了推理速度,与此同时,Faster-Whisper也改进了推理算法、优化计算过程、减少冗余计算等,用以提高模型的运行效率。

本次我们利用Faster-Whisper对日语视频进行双语(日语/国语)转录实践,看看效率如何。

构建Faster-Whisper转录环境

首先确保本地已经安装好Python3.10版本以上的开发环境,随后克隆项目:

git clone https://github.com/ycyy/faster-whisper-webui.git

进入项目的目录:

cd faster-whisper-webui

安装项目依赖:

pip3 install -r requirements.txt

这里需要注意的是,除了基础依赖,还得再装一下faster-whisper依赖:

pip3 install -r requirements-fasterWhisper.txt

如此,转录速度会更快。

模型的下载和配置

首先在项目的目录建立模型文件夹:

mkdir Models

faster-whisper项目内部已经整合了VAD算法,VAD是一种音频活动检测的算法,它可以准确的把音频中的每一句话分离开来,并且让whisper更精准的定位语音开始和结束的位置。

所有首先需要配置VAD模型:

git clone https://github.com/snakers4/silero-vad

然后将克隆下来的vad模型放入刚刚建立的Models文件夹中即可。

接着下载faster-whisper模型,下载地址:

https://huggingface.co/guillaumekln/faster-whisper-large-v2

这里建议只下载faster-whisper-large-v2模型,也就是大模型的第二版,因为faster-whisper本来就比whisper快,所以使用large模型优势就会更加的明显。

模型放入models文件夹的faster-whisper目录,最终目录结构如下:

models  
├─faster-whisper  
│  ├─large-v2  
└─silero-vad  ├─examples  │  ├─cpp  │  ├─microphone_and_webRTC_integration  │  └─pyaudio-streaming  ├─files  └─__pycache__

至此,模型就配置好了。

本地推理进行转录

现在,我们可以试一试faster-whisper的效果了,以「原神」神里绫华日语视频:《谁能拒绝一只蝴蝶忍呢?》为例子,原视频地址:

https://www.bilibili.com/video/BV1fG4y1b74e/

项目根目录运行命令:

python cli.py --model large-v2 --vad silero-vad --language Japanese --output_dir d:/whisper_model d:/Downloads/test.mp4

这里–model指定large-v2模型,–vad算法使用silero-vad,–language语言指定日语,输出目录为d:/whisper_model,转录视频是d:/Downloads/test.mp4。

程序输出:

D:\work\faster-whisper-webui>python cli.py --model large-v2 --vad silero-vad --language Japanese --output_dir d:/whisper_model d:/Downloads/test.mp4  
Using faster-whisper for Whisper  
[Auto parallel] Using GPU devices ['0'] and 8 CPU cores for VAD/transcription.  
Creating whisper container for faster-whisper  
Using parallel devices: ['0']  
Created Silerio model  
Parallel VAD: Executing chunk from 0 to 74.071224 on CPU device 0  
Loaded Silerio model from cache.  
Getting timestamps from audio file: d:/Downloads/test.mp4, start: 0, duration: 74.071224  
Processing VAD in chunk from 00:00.000 to 01:14.071  
C:\Users\zcxey\AppData\Roaming\Python\Python310\site-packages\torch\nn\modules\module.py:1501: UserWarning: operator () profile_node %669 : int[] = prim::profile_ivalue(%667)  does not have profile information (Triggered internally at ..\third_party\nvfuser\csrc\graph_fuser.cpp:108.)  return forward_call(*args, **kwargs)  
VAD processing took 2.474104000022635 seconds  
Transcribing non-speech:  
[{'end': 75.071224, 'start': 0.0}]  
Parallel VAD processing took 8.857761900057085 seconds  
Device 0 (index 0) has 1 segments  
Using device 0  
(get_merged_timestamps) Using override timestamps of size 1  
Processing timestamps:  
[{'end': 75.071224, 'start': 0.0}]  
Running whisper from  00:00.000  to  01:15.071 , duration:  75.071224 expanded:  0 prompt:  None language:  None  
Loading faster whisper model large-v2 for device None  
WARNING: fp16 option is ignored by faster-whisper - use compute_type instead.  
[00:00:00.000->00:00:03.200] 稲妻神里流 太刀術免許開伝  
[00:00:03.200->00:00:04.500] 神里綾香  
[00:00:04.500->00:00:05.500] 参ります!  
[00:00:06.600->00:00:08.200] よろしくお願いします  
[00:00:08.200->00:00:12.600] こののどかな時間がもっと増えると嬉しいのですが  
[00:00:13.600->00:00:15.900] 私って欲張りですね  
[00:00:15.900->00:00:18.100] 神里家の宿命や  
[00:00:18.100->00:00:19.900] 社部業の重りは  
[00:00:19.900->00:00:23.600] お兄様が一人で背負うべきものではありません  
[00:00:23.600->00:00:27.700] 多くの方々が私を継承してくださるのは  
[00:00:27.700->00:00:30.900] 私を白鷺の姫君や  
[00:00:30.900->00:00:34.600] 社部業神里家の霊嬢として見ているからです  
[00:00:34.600->00:00:38.500] 彼らが継承しているのは私の立場であって  
[00:00:38.500->00:00:41.700] 綾香という一戸人とは関係ございません  
[00:00:41.700->00:00:43.400] 今の私は  
[00:00:43.400->00:00:47.300] 皆さんから信頼される人になりたいと思っています  
[00:00:47.300->00:00:49.700] その気持ちを鼓舞するものは  
[00:00:49.700->00:00:52.300] 肩にのしかかる銃石でも  
[00:00:52.300->00:00:54.800] 他人からの期待でもございません  
[00:00:54.800->00:00:56.700] あなたがすでに  
[00:00:56.800->00:00:58.800] そのようなお方だからです  
[00:00:58.800->00:01:00.500] 今から言うことは  
[00:01:00.500->00:01:03.900] 稲妻幕府社部業神里家の肩書きに  
[00:01:03.900->00:01:06.200] ふさわしくないものかもしれません  
[00:01:06.200->00:01:11.100] あなたは私のわがままを受け入れてくださる方だと信じています  
[00:01:11.100->00:01:12.500] 神里流  
[00:01:12.500->00:01:14.000] 壮烈  
Whisper took 22.232674299972132 seconds  
Parallel transcription took 31.472856600070372 seconds  
Max line width 80  
Closing parallel contexts  
Closing pool of 1 processes  
Closing pool of 8 processes

可以看到,1分14秒的视频,vad用了8秒,whisper用了22秒,转录一共用了31秒。

注意,这里只是用了whisper原版的算法,现在我们添加–whisper_implementation faster-whisper参数来使用faster-whisper改进后的算法:

python cli.py --whisper_implementation faster-whisper --model large-v2 --vad silero-vad --language Japanese --output_dir d:/whisper_model d:/Downloads/test.mp4

程序返回:

Running whisper from  00:00.000  to  01:15.071 , duration:  75.071224 expanded:  0 prompt:  None language:  None  
Loading faster whisper model large-v2 for device None  
WARNING: fp16 option is ignored by faster-whisper - use compute_type instead.  
[00:00:00.000->00:00:03.200] 稲妻神里流 太刀術免許開伝  
[00:00:03.200->00:00:04.500] 神里綾香  
[00:00:04.500->00:00:05.500] 参ります!  
[00:00:06.600->00:00:08.200] よろしくお願いします  
[00:00:08.200->00:00:12.600] こののどかな時間がもっと増えると嬉しいのですが  
[00:00:13.600->00:00:15.900] 私って欲張りですね  
[00:00:15.900->00:00:18.100] 神里家の宿命や  
[00:00:18.100->00:00:19.900] 社部業の重りは  
[00:00:19.900->00:00:23.600] お兄様が一人で背負うべきものではありません  
[00:00:23.600->00:00:27.700] 多くの方々が私を継承してくださるのは  
[00:00:27.700->00:00:30.900] 私を白鷺の姫君や  
[00:00:30.900->00:00:34.600] 社部業神里家の霊嬢として見ているからです  
[00:00:34.600->00:00:38.500] 彼らが継承しているのは私の立場であって  
[00:00:38.500->00:00:41.700] 綾香という一戸人とは関係ございません  
[00:00:41.700->00:00:43.400] 今の私は  
[00:00:43.400->00:00:47.300] 皆さんから信頼される人になりたいと思っています  
[00:00:47.300->00:00:49.700] その気持ちを鼓舞するものは  
[00:00:49.700->00:00:52.300] 肩にのしかかる銃石でも  
[00:00:52.300->00:00:54.800] 他人からの期待でもございません  
[00:00:54.800->00:00:56.700] あなたがすでに  
[00:00:56.800->00:00:58.800] そのようなお方だからです  
[00:00:58.800->00:01:00.500] 今から言うことは  
[00:01:00.500->00:01:03.900] 稲妻幕府社部業神里家の肩書きに  
[00:01:03.900->00:01:06.200] ふさわしくないものかもしれません  
[00:01:06.200->00:01:11.100] あなたは私のわがままを受け入れてくださる方だと信じています  
[00:01:11.100->00:01:12.500] 神里流  
[00:01:12.500->00:01:14.000] 壮烈  
Whisper took 10.779123099986464 seconds  
Parallel transcription took 11.567014200030826 seconds

大模型只用了10秒,这效率,绝了。

中文字幕

在以往的Whisper模型中,如果我们需要中文字幕,需要通过参数–task translate翻译成英文,然后再通过第三方的翻译接口将英文翻译成中文,再手动匹配字幕效果,比较麻烦。

现在,我们只需要将语言直接设置为中文即可,程序会进行自动翻译:

python cli.py --whisper_implementation faster-whisper --model large-v2 --vad silero-vad --language Chinese --output_dir d:/whisper_model d:/Downloads/test.mp4

这里的–language参数改为Chinese。

程序返回:

Running whisper from  00:00.000  to  01:15.071 , duration:  75.071224 expanded:  0 prompt:  None language:  None  
Loading faster whisper model large-v2 for device None  
WARNING: fp16 option is ignored by faster-whisper - use compute_type instead.  
[00:00:00.000->00:00:03.200] 稲妻神里流太刀術免許改練  
[00:00:03.200->00:00:04.400] 神里綾香  
[00:00:04.400->00:00:05.400] 來吧  
[00:00:06.600->00:00:08.200] 請多多指教  
[00:00:08.200->00:00:12.600] 希望能有更多的這段寂靜的時間  
[00:00:13.600->00:00:15.800] 我真是太有興趣了  
[00:00:15.800->00:00:20.000] 神里家的宿命和社部行的重量  
[00:00:20.000->00:00:23.600] 不應該由哥哥一個人承擔  
[00:00:23.600->00:00:27.400] 很多人都敬重我  
[00:00:27.600->00:00:28.800] 是因為他們把我視為  
[00:00:28.800->00:00:34.600] 神里家的宿命和社部行的重量  
[00:00:34.600->00:00:38.600] 他們敬重的是我的立場  
[00:00:38.600->00:00:41.800] 與我自己的身分無關  
[00:00:41.800->00:00:43.400] 現在的我  
[00:00:43.400->00:00:47.400] 是想成為大家信任的一個人  
[00:00:47.400->00:00:49.800] 那些敬重我的人  
[00:00:49.800->00:00:52.400] 無論是肩上的重石  
[00:00:52.400->00:00:54.800] 或是別人的機器  
[00:00:54.800->00:00:58.800] 都是因為你已經是這樣的一個人  
[00:00:58.800->00:01:00.400] 我現在要說的話  
[00:01:00.400->00:01:03.800] 可能不適合  
[00:01:03.800->00:01:06.200] 神里家的宿命和社部行  
[00:01:06.200->00:01:11.000] 但我相信你能接受我的自私  
[00:01:11.000->00:01:12.400] 神里流  
[00:01:12.400->00:01:14.000] 消滅  
Whisper took 18.85215839999728 seconds

字幕就已经是中文了,注意转录+翻译一共花了18秒,时间成本比直接转录要高。

双语字幕效果:

结语

由于 Faster-Whisper 的速度更快,它可以扩展到更多的应用领域,包括实时场景和大规模的数据处理任务。这使得 Faster-Whisper 在语音识别、自然语言处理、机器翻译、智能对话等领域中具有更广泛的应用潜力,当然了,更重要的是,当您的电脑里D盘中的爱情片还没有中文字幕时,您当然知道现在该做些什么了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/180170.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构笔记——查找、排序(王道408)

文章目录 查找基本概念线性表查找顺序查找折半查找(二分)分块查找 树查找二叉排序树(BST)平衡二叉树(AVL)的插入平衡化复杂度分析 平衡二叉树的删除 红黑树红黑树的定义和性质红黑树定义红黑树性质 红黑树的…

MySQL进阶之性能优化与调优技巧

数据库开发-MySQL 1. 多表查询1.1 概述1.1.2 介绍1.1.3 分类 1.2 内连接1.3 外连接1.4 子查询1.4.1 介绍1.4.2 标量子查询1.4.3 列子查询1.4.4 行子查询1.4.5 表子查询 2. 事务2.1 介绍2.2 操作2.3 四大特性 3. 索引3.1 介绍3.2 结构3.3 语法 1. 多表查询 1.1 概述 1.1.2 介绍…

目标检测:Proposal-Contrastive Pretraining for Object Detection from Fewer Data

论文作者:Quentin Bouniot,Romaric Audigier,Anglique Loesch,Amaury Habrard 作者单位:Universit Paris-Saclay; Universit Jean Monnet Saint-Etienne; Universitaire de France (IUF) 论文链接:http://arxiv.org/abs/2310.16835v1 内容…

MyBatis底层原理(小白版本)

!特别声明!:这篇文章只是单纯用来应对面试,并不能用来当作深度解析的文章来看。本人才疏学浅,文章也可能有不对的地方,望指正。 此源码分析使用的是Java11 基本使用流程: String resource &q…

C#完成XML文档节点的自动计算功能

一个项目涉及XML文档中节点的自动计算,就是XML文档的每个节点都参与运算,要求: ⑴如果节点有计算公式则按照计算公式进行; ⑵如果节点没有计算公式则该节点的值就是所有子节点的值之和; ⑶节点有4种类型,计…

SpringBoot的Condition注解

文章目录 参考资料运行环境SpringBoot 自动配置原理一、Condition二、切换内置web服务器三、Enable*注解四、Import 注解五、EnableAutoConfiguration 注解六、案例七、收获与总结 参考资料 视频链接 运行环境 win10IDEA专业版SpringBoot 2.6.2 SpringBoot 自动配置原理 一、Co…

OpenCV官方教程中文版 —— 图像修复

OpenCV官方教程中文版 —— 图像修复 前言一、基础二、代码三、更多资源 前言 本节我们将要学习: • 使用修补技术去除老照片中小的噪音和划痕 • 使用 OpenCV 中与修补技术相关的函数 一、基础 在我们每个人的家中可能都会几张退化的老照片,有时候…

前端性能分析工具

前段时间在工作中,需要判断模块bundle size缩减对页面的哪些性能产生了影响, 因此需要了解前端的性能指标如何定义的,以及前端有哪些性能分析工具, 于是顺便整理了一篇笔记, 以供前端小白对性能这块知识点做一个入门级的了解. 页面渲染 在了解性能指标和分析工具之前,有必要先…

PostgreSQL逻辑管理结构

1.数据库逻辑结构介绍 2.数据库基本操作 2.1 创建数据库 CREATE DATABASE name [ [ WITH ] [ OWNER [] user_name ] [ TEMPLATE [] template ] [ ENCODING [] encoding ] [ LC_COLLATE [] lc_collate ] [ LC_CTYPE [] lc_ctype ] [ TABLESPACE [] tablespace ] [ CONNECTION L…

python连接clickhouse (CK)

Author: tkhywang 2810248865qq.com Date: 2023-11-01 11:28:58 LastEditors: tkhywang 2810248865qq.com LastEditTime: 2023-11-01 11:36:25 FilePath: \PythonProject02\Python读取clickhouse2 数据库数据.py Description: 这是默认设置,请设置customMade, 打开koroFileHead…

freertos入门(stm32f10c8t6版闪烁灯)

首先到官网下载freertos源码,然后找一个stm32f10c8t6的空模板,这个空模板实现点灯之类的都行。 然后在这个空模板的工程下新建一个FreeRtos文件夹 接着在FreeRtos文件夹下新建三个文件夹,分别是src存放源码 inc 存放头文件,port …

EasyExcel复杂表头数据导入

目录 表头示例导入代码数据导出 表头示例 导入代码 Overridepublic void importExcel(InputStream inputStream) {ItemExcelListener itemExcelListener new ItemExcelListener();EasyExcel.read(inputStream, ImportItem.class, itemExcelListener).headRowNumber(2).sheet()…

广汽传祺E9上市,3DCAT实时云渲染助力线上3D高清看车体验

今年5月21日,中国智电新能源旗舰MPV——广汽传祺智电新能源E9在北京人民大会堂举办上市发布会。 发布会现场(图源官方) 为了让更多的消费者能够在线上感受到广汽传祺E9的魅力,3DCAT实时渲染云与大圣科技合作为广汽传祺打造了一款…

CHS零壹视频恢复程序高级版视频修复OCR使用方法

目前CHS零壹视频恢复程序监控版、专业版、高级版已经支持了OCR,OCR是一种光学识别系统,高级版最新版本中不仅仅是在视频恢复中支持OCR,同时视频修复模块也增加了OCR功能,此功能可以针对一些批量修复的视频文件(如执法仪…

IDEA中如何移除未使用的import

👨🏻‍💻 热爱摄影的程序员 👨🏻‍🎨 喜欢编码的设计师 🧕🏻 擅长设计的剪辑师 🧑🏻‍🏫 一位高冷无情的编码爱好者 大家好,我是全栈工…

@reduxjs/toolkit配置react-redux解决createStore或将在未来被淘汰警告

通常 我们用redux都需要通过 createStore 但目前 你去用它 基本都会被划线 甚至有点厉害的的编辑器 他会直接告诉你这个东西基本快被弃用了 这个应该大家都知道 最好不要用已经被明确未来或弃用的语法 因为一旦弃用这个系统就需要维护 而且说 一般会被淘汰的语法 本身也就是有…

少儿编程 2023年9月中国电子学会图形化编程等级考试Scratch编程四级真题解析(判断题)

2023年9月scratch编程等级考试四级真题 判断题(共10题,每题2分,共20分) 11、运行程序后,变量"result"的值是6 答案:对 考点分析:考查积木综合使用,重点考查自定义积木的使用 图中自定义积木实现的功能是获取两个数中最大的那个数并存放在result变量中,左…

FMC驱动LCD

硬件简介 主控:STM32H750 LCD屏幕为16位并口屏幕 CubeMX配置 chip select: 选择起始地址块号,ADDR[27:26] Memory type: 内存类型,选择LCD Interface LCD Register Select: 根据选择计算映射地址, FSNC_A[25] Data: 数据宽度 NOR/PSRAM ti…

分享一个抖音视频解析神器~

怎么样下载抖音视频?相信很多人都有过这样的困惑。作为一个资深短视频剪辑工作者,常常需要用到各种视频素材,其中不乏需要从抖音上下载的,因此我也尝试过许多下载工具,但是效果都不大满意,直到有一次朋友给…

el-table表格设置——动态修改表头

(1) 首先是form表单写表单设置按钮&#xff1a; &#xff08;1.1&#xff09;使用el-popover&#xff0c;你需要修改的是this.colOptions&#xff0c;colSelect: <el-popover id"popover" popper-class"planProver" placement"bottom" width&…