代码随想录算法训练营第23期day41|01背包问题、01背包问题——滚动数组、416. 分割等和子集

目录

一、01背包理论基础

1.二维dp数组01背包

1)确定dp数组以及下标的含义 

2)确定递推公式

3)dp数组如何初始化

4)确定遍历顺序

5)举例推导dp数组

2.一维dp数组(滚动数组) 

1)确定dp数组的定义

2)一维dp数组的递推公式

3)一维dp数组如何初始化

4)一维dp数组遍历顺序

5)举例推导dp数组

二、(leetcode 416)分割等和子集



一、01背包理论基础

416.分割等和子集1

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大

动态规划-背包问题

每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是O(2^n),这里的n表示物品数量。

所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!

在下面的讲解中,举一个例子:

背包最大重量为4。

物品为:

重量价值
物品0115
物品1320
物品2430

问背包能背的物品最大价值是多少?

以下讲解和图示中出现的数字都是以这个例子为例。

1.二维dp数组01背包

1)确定dp数组以及下标的含义 

对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

这个二维数组的定义看下面这个图:

动态规划-背包问题1

要时刻记着这个dp数组的含义,下面的一些步骤都围绕这dp数组的含义进行的

2)确定递推公式

那么可以有两个方向推出来dp[i][j],

  • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
  • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

3)dp数组如何初始化

关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱

首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:

动态规划-背包问题2

在看其他情况

状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i是由i-1推导出来,那么i为0的时候就一定要初始化。

dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

代码初始化如下:

for (int j = 0 ; j < weight[0]; j++) {  // 当然这一步,如果把dp数组预先初始化为0了,这一步就可以省略,但很多同学应该没有想清楚这一点。dp[0][j] = 0;
}
// 正序遍历
for (int j = weight[0]; j <= bagweight; j++) {dp[0][j] = value[0];
}

此时dp数组初始化情况如图所示:

动态规划-背包问题7

dp[0][j] 和 dp[i][0] 都已经初始化了,那么其他下标应该初始化多少呢?

其实从递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。

初始-1,初始-2,初始100,都可以!

但只不过一开始就统一把dp数组统一初始为0,更方便一些。

动态规划-背包问题10

最后初始化代码如下:

// 初始化 dp
vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
for (int j = weight[0]; j <= bagweight; j++) {dp[0][j] = value[0];
}

4)确定遍历顺序

在如下图中,可以看出,有两个遍历的维度:物品与背包重量

动态规划-背包问题3

那么问题来了,先遍历物品还是先遍历背包重量呢?

其实都可以!! 但是先遍历物品更好理解

先遍历物品,然后遍历背包重量的代码。

// weight数组的大小 就是物品个数
for(int i = 1; i < weight.size(); i++) { // 遍历物品for(int j = 0; j <= bagweight; j++) { // 遍历背包容量if (j < weight[i]) dp[i][j] = dp[i - 1][j];else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);}
}

先遍历背包,再遍历物品,也是可以的!(注意这里使用的二维dp数组)

例如这样:

// weight数组的大小 就是物品个数
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量for(int i = 1; i < weight.size(); i++) { // 遍历物品if (j < weight[i]) dp[i][j] = dp[i - 1][j];else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);}
}

为什么也是可以的呢?

要理解递归的本质和递推的方向

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]和dp[i - 1][j - weight[i]]推导出来的。

dp[i-1][j]和dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:

动态规划-背包问题5

再来看看先遍历背包,再遍历物品呢,如图:

动态规划-背包问题6

大家可以看出,虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!

但先遍历物品再遍历背包这个顺序更好理解。

其实背包问题里,两个for循环的先后循序是非常有讲究的,理解遍历顺序其实比理解推导公式难多了

5)举例推导dp数组

来看一下对应的dp数组的数值,如图:

动态规划-背包问题4

最终结果就是dp[2][4]。

void test_2_wei_bag_problem1() {vector<int> weight = {1, 3, 4};vector<int> value = {15, 20, 30};int bagweight = 4;// 二维数组vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));// 初始化for (int j = weight[0]; j <= bagweight; j++) {dp[0][j] = value[0];}// weight数组的大小 就是物品个数for(int i = 1; i < weight.size(); i++) { // 遍历物品for(int j = 0; j <= bagweight; j++) { // 遍历背包容量if (j < weight[i]) dp[i][j] = dp[i - 1][j];else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);}}cout << dp[weight.size() - 1][bagweight] << endl;
}int main() {test_2_wei_bag_problem1();
}

2.一维dp数组(滚动数组) 

对于背包问题其实状态都是可以压缩的

在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);

与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。

这就是滚动数组的由来,需要满足的条件是上一层可以重复利用,直接拷贝到当前层。

dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少

动规五部曲分析如下:

1)确定dp数组的定义

在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

2)一维dp数组的递推公式

dp[j]为 容量为j的背包所背的最大价值,那么如何推导dp[j]呢?

dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。

dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])

此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,

所以递归公式为:

dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

可以看出相对于二维dp数组的写法,就是把dp[i][j]中i的维度去掉了。

3)一维dp数组如何初始化

dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。

那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?

看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。

这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了

那么我假设物品价值都是大于0的,所以dp数组初始化的时候,都初始为0就可以了。

4)一维dp数组遍历顺序

代码如下:

for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}
}

和二维dp的写法中,遍历背包的顺序是不一样的!

二维dp遍历的时候,背包容量是从小到大,而一维dp遍历的时候,背包是从大到小。

为什么呢?

倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次!

举一个例子:物品0的重量weight[0] = 1,价值value[0] = 15

如果正序遍历

dp[1] = dp[1 - weight[0]] + value[0] = 15

dp[2] = dp[2 - weight[0]] + value[0] = 30

此时dp[2]就已经是30了,意味着物品0,被放入了两次,所以不能正序遍历。

为什么倒序遍历,就可以保证物品只放入一次呢?

倒序就是先算dp[2]

dp[2] = dp[2 - weight[0]] + value[0] = 15 (dp数组已经都初始化为0)

dp[1] = dp[1 - weight[0]] + value[0] = 15

所以从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了。

那么问题又来了,为什么二维dp数组历的时候不用倒序呢?

因为对于二维dp,dp[i][j]都是通过上一层即dp[i - 1][j]计算而来,本层的dp[i][j]并不会被覆盖!

(如何这里读不懂,大家就要动手试一试了,空想还是不靠谱的,实践出真知!)

再来看看两个嵌套for循环的顺序,代码中是先遍历物品嵌套遍历背包容量,那可不可以先遍历背包容量嵌套遍历物品呢?

不可以!

因为一维dp的写法,背包容量一定是要倒序遍历(原因上面已经讲了),如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。

倒序遍历的原因是,本质上还是一个对二维数组的遍历,并且右下角的值依赖上一层左上角的值,因此需要保证左边的值仍然是上一层的,从右向左覆盖。

所以一维dp数组的背包在遍历顺序上和二维其实是有很大差异的!,这一点一定要注意。

5)举例推导dp数组

一维dp,分别用物品0,物品1,物品2 来遍历背包,最终得到结果如下:

动态规划-背包问题9

void test_1_wei_bag_problem() {vector<int> weight = {1, 3, 4};vector<int> value = {15, 20, 30};int bagWeight = 4;// 初始化vector<int> dp(bagWeight + 1, 0);for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}}cout << dp[bagWeight] << endl;
}int main() {test_1_wei_bag_problem();
}

二、(leetcode 416)分割等和子集

力扣题目链接

要注意题目描述中商品是不是可以重复放入

即一个商品如果可以重复多次放入是完全背包,而只能放入一次是01背包,写法还是不一样的。

要明确本题中我们要使用的是01背包,因为元素我们只能用一次。

回归主题:首先,本题要求集合里能否出现总和为 sum / 2 的子集。

一一对应一下本题,看看背包问题如何来解决

只有确定了如下四点,才能把01背包问题套到本题上来。

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。

以上分析完,就可以套用01背包,来解决这个问题了。

动规五部曲分析如下:

1)确定dp数组以及下标的含义

01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]。

本题中每一个元素的数值既是重量,也是价值。

套到本题,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]

那么如果背包容量为target, dp[target]就是装满 背包之后的重量,所以 当 dp[target] == target 的时候,背包就装满了。

那还有装不满的时候?

拿输入数组 [1, 5, 11, 5],举例, dp[7] 只能等于 6,因为 只能放进 1 和 5。

而dp[6] 就可以等于6了,放进1 和 5,那么dp[6] == 6,说明背包装满了。

2)确定递推公式

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。

所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);

3)dp数组如何初始化

从dp[j]的定义来看,首先dp[0]一定是0。

如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。

这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了

本题题目中 只包含正整数的非空数组,所以非0下标的元素初始化为0就可以了。

// 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
// 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
vector<int> dp(10001, 0);

4)确定遍历顺序

如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

// 开始 01背包
for(int i = 0; i < nums.size(); i++) {for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);}
}

5)举例推导dp数组

dp[j]的数值一定是小于等于j的。

如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j,理解这一点很重要。

用例1,输入[1,5,11,5] 为例,如图:

416.分割等和子集2

最后dp[11] == 11,说明可以将这个数组分割成两个子集,使得两个子集的元素和相等。

class Solution {
public:bool canPartition(vector<int>& nums) {int sum = 0;// dp[i]中的i表示背包内总和// 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200// 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了vector<int> dp(10001, 0);for (int i = 0; i < nums.size(); i++) {sum += nums[i];}// 也可以使用库函数一步求和// int sum = accumulate(nums.begin(), nums.end(), 0);if (sum % 2 == 1) return false;int target = sum / 2;// 开始 01背包for(int i = 0; i < nums.size(); i++) {for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);}}// 集合中的元素正好可以凑成总和targetif (dp[target] == target) return true;return false;}
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n),虽然dp数组大小为一个常数,但是大常数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/180660.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解决Ts中的error.stack报错property ‘stack‘ does not exist on type ‘unknown typescript

我用的Ts版本是5.x&#xff0c;所以在使用的时候出现了这个问题 解决方式&#xff1a; 将error先转一遍就好了 参考链接&#xff1a; 你真的会处理TS中的Error么 - 掘金 (juejin.cn) Announcing TypeScript 4.4 - TypeScript (microsoft.com)

Canoe UDS诊断技术

Canoe UDS诊断 汽车诊断技术概述诊断术语OBD诊断CAN诊断协议诊断周期UDS诊断服务Diagnostic Request和Response诊断服务介绍 诊断文件CDD介绍诊断安全访问服务(security Access)介绍 如何在Canoe UDS诊断实战CANoe 开启诊断功能Canoe 诊断实战 汽车诊断技术概述 汽车诊断技术是…

尚硅谷大数据项目《在线教育之实时数仓》笔记005

视频地址&#xff1a;尚硅谷大数据项目《在线教育之实时数仓》_哔哩哔哩_bilibili 目录 第9章 数仓开发之DWD层 P031 P032 P033 P034 P035 P036 P037 P038 P039 P040 第9章 数仓开发之DWD层 P031 DWD层设计要点&#xff1a; &#xff08;1&#xff09;DWD层的设计依…

ajax-axios发送 get请求 或者 发送post请求带有请求体参数

/* axios v0.21.1 | (c) 2020 by Matt Zabriskie */ !function(e,t){"object"typeof exports&&"object"typeof module?module.exportst():"function"typeof define&&define.amd?define([],t):"object"typeof export…

单链表经典算法

移除链表元素 给你一个链表的头节点 head 和一个整数 val &#xff0c;请你删除链表中所有满足 Node.val val 的节点&#xff0c;并返回 新的头节点 。 思路&#xff1a;&#xff08;1&#xff09;创建三个结构体指针&#xff0c;分别代表一条新链表的头newhead&#xff0c;…

面试10000次依然会问的【ReentrantLock】,你还不会?

引言 在并发编程的世界中&#xff0c;ReentrantLock扮演着至关重要的角色。它是一个实现了重入特性的互斥锁&#xff0c;提供了比synchronized关键字更加灵活的锁定机制。ReentrantLock属于java.util.concurrent.locks包&#xff0c;是Java并发API的一部分。 与传统的synchro…

隐私保护多领域推荐的紧密度共聚类联邦概率偏好分布模型

论文链接 Federated Probabilistic Preference Distribution Modelling with Compactness Co-Clustering for Privacy-Preserving Multi-Domain Recommendation 引言 这篇论文提出的概率偏好分布是通过使用高斯分布来表示用户和项目的偏好。在论文中&#xff0c;作者提出了一…

10.MySQL事务(上)

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 目录 前言&#xff1a; 是什么&#xff1f; 为什么? 怎么做&#xff1f; 前言&#xff1a; 本篇文章将会说明什么是事务&#xff0c;为什么会出现事务&#xff1f;事务是怎么做的&#xff1f; 是什么&#xff1f; 我…

Nginx反向代理和负载均衡

文章目录 前言一、Nginx介绍二、Nginx的作用1.正向代理2.反向代理3.负载均衡之轮询4.负载均衡之加权轮询 三、Nginx安装1.Nginx下载2.启动Nginx3.检查Nginx是否启动成功4.配置监听5.关闭nginx 前言 比如公司项目刚刚上线的时候&#xff0c;并发量小&#xff0c;用户使用的少&a…

ElementuiPlus的table组件实现行拖动与列拖动

借助了插件sortablejs。这种方法只适合做非树状table。如果想实现树状table&#xff0c;并且可拖动。可以试一下aggridVue3这个插件 <template><div class"draggable" style"padding: 20px"><el-table row-key"id" :data"t…

计算机组成与结构-计算机体系结构

计算机体系结构 指令系统 Flynn分类法 SISD&#xff08;单指令流单数据流&#xff09; 结构 控制部分&#xff1a;一个处理器&#xff1a;一个主存模块&#xff1a;一个 代表 单处理器系统 SIMD&#xff08;单指令流多数据流&#xff09; 结构 控制部分&#xff1a;一个处理…

CleanMyMac2024破解版如何下载?

CleanMyMac作为一款专业的苹果电脑清理软件&#xff0c;它不仅仅能单纯的卸载不用、少用的应用&#xff0c;同时还支持&#xff1a;1、清理应用程序的数据文件&#xff0c;将应用重置回初始状态&#xff0c;减少空间占用&#xff1b;2、自动检查应用更新&#xff0c;保持应用的…

Python画图之动态爱心

Python画出动态爱心&#xff08;有趣小游戏&#xff09; 一、效果图二、Python代码 一、效果图 二、Python代码 import random from math import sin, cos, pi, log from tkinter import *CANVAS_WIDTH 640 # 画布的宽 CANVAS_HEIGHT 480 # 画布的高 CANVAS_CENTER_X CANV…

【PID专题】MATLAB如何实现PID?

MATLAB是一种非常强大的工具&#xff0c;用于实现和分析PID&#xff08;比例-积分-微分&#xff09;控制器。在MATLAB中&#xff0c;您可以使用控制系统工具箱来设计、模拟和调整PID控制系统。 以下是一般步骤&#xff0c;演示如何在MATLAB中实现PID控制&#xff1a; 1. 打开MA…

PHP进销存ERP系统源码

PHP进销存ERP系统源码 系统介绍&#xff1a; 扫描入库库存预警仓库管理商品管理供应商管理。 1、电脑端手机端&#xff0c;手机实时共享&#xff0c;手机端一目了然。 2、多商户Saas营销版 无限开商户&#xff0c;用户前端自行注册&#xff0c;后台管理员审核开通 3、管理…

【服务器】Java连接redis及使用Java操作redis、使用场景

一、Java连接redis-No-SQL 1、导入依赖 在你的项目里面导入redis的pom依赖 <dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId><version>2.9.0</version> </dependency> 2、连接redis 连接redis //…

Redis-使用java代码操作Redis

&#x1f3c5;我是默&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; ​ &#x1f31f;在这里&#xff0c;我要推荐给大家我的专栏《Linux》。&#x1f3af;&#x1f3af; &#x1f680;无论你是编程小白&#xff0c;还是有一定基础的程序员&#xff0c;这…

HarmonyOS UI 开发

引言 HarmonyOS 提供了强大的 UI 开发工具和组件&#xff0c;使开发者能够创建吸引人的用户界面。本章将详细介绍在 HarmonyOS 中应用 JS、CSS、HTML&#xff0c;HarmonyOS 的 UI 组件以及如何自定义 UI 组件。 目录 JS、CSS、HTML 在 HarmonyOS 中的应用HarmonyOS 的 UI 组…

【STM32】基于HAL库建立自己的低功耗模式配置库(STM32L4系列低功耗所有配置汇总)

【STM32】基于HAL库建立自己的低功耗模式配置库&#xff08;STM32L4系列低功耗所有配置汇总&#xff09; 文章目录 低功耗模式&#xff08;此章节可直接跳过&#xff09;低功耗模式简介睡眠模式停止模式待机模式 建立自己的低功耗模式配置库通过结构体的方式来进行传参RTC配置…

将Bean注入Spring容器的五种方式

将bean放入Spring容器中有哪些方式&#xff1f; 我们知道平时在开发中使用Spring的时候&#xff0c;都是将对象交由Spring去管理&#xff0c;那么将一个对象加入到Spring容器中&#xff0c;有哪些方式呢&#xff0c;下面我就来总结一下 1、Configuration Bean 这种方式其实也是…