EM@解三角形@正弦定理@余弦定理

文章目录

    • abstract
    • 解三角形
      • 基本原理
      • 不唯一性
    • 正弦定理
      • 直角三角形中的情形
      • 推广
        • 锐角三角形
        • 钝角情形
      • 小结:正弦定理
    • 余弦定理
      • 直角三角形中的情形
      • 非直角情形
      • 小结:余弦定理
        • 公式的角余弦形式

abstract

  • 解直角三角形问题
  • 正弦定理和余弦定理的推导
    • 对于非直角情形,都是直角情形的推广
    • 同过构造辅助线(垂线),来构造直角三角形,利用直角三角形的特点构建恒等方程,得到相应的定理

解三角形

  • 一般地,我们把三角形的3个角和它的对边分别叫做三角形的元素,已知三角形的某几个元素求其余元素的过程称为解三角形

基本原理

  • 三角形内角和为 π \pi π
  • 正弦定理
  • 余弦定理

不唯一性

  • 某些条件下可以给出不只一个的解
  • 当已知条件是全等三角形的条时,具有唯一解,否则可能有2个解
  • 例如,已知 A , B A,B A,B, a a a,具有唯一解
    • 而已知 a , b , A a,b,A a,b,A,则可能具有2个解

正弦定理

  • 正弦定理揭示了:在任意一个三角形中,角与它对应的边之间在数量上的关系
  • 设三角形 A B C ABC ABC中, A , B , C A,B,C A,B,C的对边分别为 a , b , c a,b,c a,b,c;角 ∠ A \angle{A} A可以简写为 A A A, ∠ B , ∠ C \angle{B},\angle{C} B,C类似得可以简写为 B , C B,C B,C

直角三角形中的情形

  • ∠ C = π 2 \angle{C}=\frac{\pi}{2} C=2π时:
    • 显然 a c = sin ⁡ A \frac{a}{c}=\sin{A} ca=sinA, b c = sin ⁡ B \frac{b}{c}={\sin{B}} cb=sinB,即有 a sin ⁡ A \frac{a}{\sin{A}} sinAa= b sin ⁡ B \frac{b}{\sin{B}} sinBb= c c c(1)
      • sin ⁡ C = sin ⁡ π 2 \sin{C}=\sin{\frac{\pi}{2}} sinC=sin2π= 1 1 1,从而 c c c= c 1 \frac{c}{1} 1c= c sin ⁡ C \frac{c}{\sin{C}} sinCc
      • 因此式(1)改写为 a sin ⁡ A \frac{a}{\sin{A}} sinAa= b sin ⁡ B \frac{b}{\sin{B}} sinBb= c sin ⁡ C \frac{c}{\sin{C}} sinCc(2)

推广

  • 在一般三角形中,式(2)仍然成立
锐角三角形
  • A , B , C A,B,C A,B,C对应的角都时锐角时
    • 过点 C C C C D ⊥ A B CD\perp{AB} CDAB于点 D D D
      • 显然 C D b \frac{CD}{b} bCD= sin ⁡ A \sin{A} sinA; C D a sin ⁡ B \frac{CD}{a}\sin{B} aCDsinB,分别变形,可得
        • C D = b sin ⁡ A CD=b\sin{A} CD=bsinA
        • C D = a sin ⁡ B CD=a\sin{B} CD=asinB
      • b sin ⁡ A b\sin{A} bsinA= a sin ⁡ B a\sin{B} asinB,变形(两边同时除以 sin ⁡ A sin ⁡ B \sin{A}\sin{B} sinAsinB,得 a sin ⁡ A \frac{a}{\sin{A}} sinAa= b sin ⁡ B \frac{b}{\sin{B}} sinBb(3)
    • 同理,过点 B B B作辅助线同样可证 a sin ⁡ A \frac{a}{\sin{A}} sinAa= c sin ⁡ C \frac{c}{\sin{C}} sinCc(4),若过点 A A A作辅助线可得 b sin ⁡ B \frac{b}{\sin{B}} sinBb= c sin ⁡ C \frac{c}{\sin{C}} sinCc(5)
    • 由式(3,4)可知(2)成立
钝角情形
  • 不妨设 ∠ B > π 2 \angle{B}>\frac{\pi}{2} B>2π,作 C D ⊥ A B CD\perp{AB} CDAB,交 A B AB AB的延长线于点 D D D
    • C D b \frac{CD}{b} bCD= sin ⁡ A \sin{A} sinA; C D a = sin ⁡ ( π − B ) \frac{CD}{a}=\sin{(\pi-{B})} aCD=sin(πB)= sin ⁡ B \sin{B} sinB
    • 从而有 C D CD CD= b sin ⁡ B b\sin{B} bsinB= a sin ⁡ B a\sin{B} asinB(6),变形可得式(3)
    • 同理(比如过点 A A A作辅助线),可得式(5)
    • 所以式(2)此情形也成立

小结:正弦定理

  • 在任意一个三角行中,各边的长和它所对的角的正弦的比相等,即 a sin ⁡ A \frac{a}{\sin{A}} sinAa= b sin ⁡ B \frac{b}{\sin{B}} sinBb= c sin ⁡ C \frac{c}{\sin{C}} sinCc
  • 解三角形问题中,若已知条件有角及其对边,那么可以考虑使用正弦定理,例如 a , b , A a,b,A a,b,A

余弦定理

  • 若已知一个三角形的两边即其夹角,则该三角形唯一地完全确定

    • 这类情况无法直接应用正弦定理,因为已知条件中的角是夹角而不是已知边的对角
  • 为了解这类三角形,需要新的途径,也就是余弦定理

  • 设三角形 A B C ABC ABC中已知 ∠ C \angle{C} C,且其邻边 a , b a,b a,b已知

直角三角形中的情形

  • ∠ C \angle{C} C= π 2 \frac{\pi}{2} 2π,则可以用勾股定理求出 c c c

非直角情形

  • 情形1情形2
    在这里插入图片描述
    在这里插入图片描述
    ∠ C < π 2 \angle{C}<\frac{\pi}{2} C<2π ∠ C > π 2 \angle{C}>\frac{\pi}{2} C>2π
  • ∠ C < π 2 \angle{C}<\frac{\pi}{2} C<2π时: B D BD BD= a − b cos ⁡ C a-b\cos{C} abcosC(1); A D AD AD= b sin ⁡ C b\sin{C} bsinC(2)

  • ∠ C > π 2 \angle{C}>\frac{\pi}{2} C>2π时; B D BD BD= a + b cos ⁡ ( π − C ) a+b\cos{(\pi-C)} a+bcos(πC)= a − b cos ⁡ C a-b\cos{C} abcosC; A D AD AD= b sin ⁡ ( π − C ) b\sin{(\pi-C)} bsin(πC)= b sin ⁡ C b\sin{C} bsinC

  • 容易看出,无论 ∠ C \angle{C} C是锐角还是钝角,都有

    • B D BD BD= a − b cos ⁡ C a-b\cos{C} abcosC
    • A D AD AD= b sin ⁡ C b\sin{C} bsinC
  • 在情形1和2中都有直角三角形 A D B ADB ADB, ∠ D = π 2 \angle{D}=\frac{\pi}{2} D=2π

    • 应用勾股定理, c 2 c^2 c2= A D 2 + B D 2 AD^2+BD^2 AD2+BD2(3)
    • 代入(1,2),得 c 2 = b 2 sin ⁡ 2 C + ( a − b cos ⁡ C ) 2 c^2=b^2\sin^2{C}+(a-b\cos{C})^2 c2=b2sin2C+(abcosC)2= a 2 + b 2 − 2 a b cos ⁡ C a^2+b^2-2ab\cos{C} a2+b22abcosC(4-1)
  • 同理, a 2 a^2 a2= a 2 + c 2 − 2 a c cos ⁡ B a^2+c^2-2ac\cos{B} a2+c22accosB (4-2); c 2 c^2 c2= a 2 + b 2 − 2 b c cos ⁡ A a^2+b^2-2bc\cos{A} a2+b22bccosA(4-3)

小结:余弦定理

  • 三角形任何一边的平方等于其他两边的平方和减去两边与它们夹角的余弦的积的2倍即上述公式组(4-1,4-2,4-3)
  • 该公式组表述了任意一个三角形中三边长与三个内角余弦之间的数量关系
  • 在一个三角形中,若已知两边及其夹角,就可以利用余弦定理求出第三边(唯一)
公式的角余弦形式
  • cos ⁡ A = b 2 + c 2 − a 2 2 b c \cos{A}=\frac{b^2+c^2-a^2}{2bc} cosA=2bcb2+c2a2
  • cos ⁡ B = a 2 + c 2 − b 2 2 a c \cos{B}=\frac{a^2+c^2-b^2}{2ac} cosB=2aca2+c2b2
  • cos ⁡ C = a 2 + b 2 − c 2 2 a b \cos{C}=\frac{a^2+b^2-c^2}{2ab} cosC=2aba2+b2c2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/184204.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器视觉的试卷批改系统 - opencv python 视觉识别 计算机竞赛

文章目录 0 简介1 项目背景2 项目目的3 系统设计3.1 目标对象3.2 系统架构3.3 软件设计方案 4 图像预处理4.1 灰度二值化4.2 形态学处理4.3 算式提取4.4 倾斜校正4.5 字符分割 5 字符识别5.1 支持向量机原理5.2 基于SVM的字符识别5.3 SVM算法实现 6 算法测试7 系统实现8 最后 0…

微服务架构深入理解 | 技术栈

&#x1f497;wei_shuo的个人主页 &#x1f4ab;wei_shuo的学习社区 &#x1f310;Hello World &#xff01; 微服务架构深入理解 | 技术栈 服务网关 服务网关是在微服务架构中扮演重要角色的组件&#xff0c;它是系统对外的入口&#xff0c;负责接收和处理客户端的请求&#x…

【算法 | 模拟No.3】leetcode 38. 外观数列

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【Leetcode】 &#x1f354;本专栏旨在提高自己算法能力的同时&#xff0c;记录一下自己的学习过程&#xff0c;希望…

鸿蒙原生应用开发-DevEco Studio超级终端模拟器的使用

一、了解超级终端模拟器支持的设备情况 该特性在DevEco Studio V2.1 Release及更高版本中支持。 目前超级终端模拟器支持“PhonePhone”、“PhoneTablet”和“PhoneTV”的设备组网方式&#xff0c;开发者可以使用该超级终端模拟器来调测具备跨设备特性的应用/服务&#xff0c;如…

中远麒麟堡垒机SQL注入漏洞复现

简介 中远麒麟堡垒机用于运维管理的认证、授权、审计等监控管理&#xff0c;在该产品admin.php处存在SQL 注入漏洞。 漏洞复现 FOFA语法&#xff1a; body"url\"admin.php?controlleradmin_index&actionget_user_login_fristauth&username" 或者 c…

redis: 记录一次线上redis内存占用过大问题解决过程

引言 记录一次线上redis占用过大的排查过程&#xff0c;供后续参考 问题背景 测试同事突然反馈测试环境的web系统无法登陆&#xff0c;同时发现其他子系统也存在各类使用问题 排查过程 1、因为首先反馈的是测试环境系统无法登陆&#xff0c;于是首先去查看了登陆功能的报错…

【STM32】HAL库UART含校验位的串口通信配置BUG避坑

【STM32】HAL库UART含校验位的串口通信配置BUG避坑 文章目录 UART协议校验位HAL库配置含校验位的串口配置BUG避坑附录&#xff1a;Cortex-M架构的SysTick系统定时器精准延时和MCU位带操作SysTick系统定时器精准延时延时函数阻塞延时非阻塞延时 位带操作位带代码位带宏定义总线函…

Vuex状态管理(简单易懂、全网最全)

目录 Vuex是什么&#xff1f; 如何部署 如何使用 state 基础使用 在计算属性属性中使用 使用展开运算符 mutations 基础使用 使用辅助函数&#xff08;mapMutations&#xff09;简化 使用常量替代 Mutation 事件类型 getters actions 使用辅助函数&#xff08;…

启动Hbase出现报错

报错信息&#xff1a;slave1:head: cannot open/usr/local/hbase-2.3.1/bin/../logs/hbasewanggiqi-regionserver-slavel.out’ for reading: No such file or direslave2: head: cannot open/usr/local/hbase-2.3.1/bin/../logs/hbasewangqiqi-regionserver-slave2.out’ for …

计算机毕业论文内容参考|基于spingboot的金融投资顾问推荐系统

文章目录 导文文章重点摘要前言绪论课题背景:国内外现状与趋势:课题内容:相关技术与方法介绍系统分析系统设计系统实现总结与展望1本文总结2后续工作展望导文 计算机毕业论文内容参考|基于spingboot的金融投资顾问推荐系统 文章重点 摘要 基于SpingBoot的金融投资顾问推荐…

汽车生产RFID智能制造设计解决方案与思路

汽车行业需求 汽车行业正面临着快速变革&#xff0c;传统的汽车制造方式正在向柔性化、数字化、自动化和数据化的智能制造体系转变&#xff0c;在这个变革的背景下&#xff0c;汽车制造企业面临着物流、生产、配送和资产管理等方面的挑战&#xff0c;为了应对这些挑战&#xf…

ch579串口编程笔记

“CH579SFR.h”库文件&#xff0c;关于串口中断部分 /* UART interrupt identification values for IIR bits 3:0 */ #define UART_II_SLV_ADDR 0x0E // RO, UART0 slave address match #define UART_II_LINE_STAT 0x06 // R…

PTE SST和RL模板

目录 事实证明&#xff0c;SST分值占比很小&#xff0c;不是很需要好好练 SST的模板&#xff1a; RL模板&#xff1a; 给你一个模版供参考&#xff1a; RA技巧 为什么说日本人团结 This lecture mainly talked about the importance of words and the sound of words and…

10道高频webpack面试题快问快答

面试中的快问快答 快问快答的情景在面试中非常常见。 在面试过程中&#xff0c;面试官通常会使用快问快答的方式来快速评估面试者的基础知识、思维能力和反应速度。 这种情景下&#xff0c;面试官会提出一系列简短的问题&#xff0c;并期望面试者能够迅速做出回答或提供简洁明…

在微信小程序中怎么实现报名功能

在当今数字化时代&#xff0c;微信小程序已经成为各行各业进行营销和客户管理的必备工具。其中&#xff0c;报名功能作为微信小程序的一个重要应用场景&#xff0c;为企业或组织提供了方便、高效、实时的数据收集与管理方式。本文将为你详细介绍如何在微信小程序中实现报名功能…

MathType2024优秀的数学公式编辑工具

数学是许多学科中必不可少的一部分&#xff0c;而数学公式在学术和科学领域使用广泛。然而&#xff0c;许多人在创建和编辑数学公式时面临困难。 作为软件开发人员&#xff0c;在编写技术文档时通常也会需要输入一些复杂数学、物理公式&#xff0c;而 Word 中的公式编辑有时使…

阿里开源中间件一览

1. 概述以及竞品对比 间件介绍官方链接竞品竞品介绍异同点对比Dubbo高性能的RPC框架&#xff0c;用于实现分布式服务的调用和管理。DubbogRPC gRPC是由Google开源的一款高性能、通用的RPC框架&#xff0c;支持多种编程语言 链接&#xff1a;gRPC Dubbo更注重于服务治理和可扩展…

【Web】在前端中CSS的语法

CSS规则是由两个主要的部分构成&#xff1a;选择器、以及一条或多条声明。 选择器通常是需要改变的HTML元素。 每条声明由一个属性和一个值组成。 属性&#xff08;Property&#xff09;是需要设置的样式属性&#xff08;Style attribute&#xff09;。每一个属性有一个值。…

峰回网关数采PLC

1.网络配置 例如&#xff1a;plc地址是192.168.1.56 1.访问网关 峰回网关默认网关地址 192.168.3.18&#xff0c;或者&#xff08;10.10.253.354&#xff09;&#xff0c;本案例按照3.18讲解。 1和1相连&#xff0c;0和电脑相连 本地电脑修改ip为192.168.3.3&#xff08;和3…

ps人像怎么做渐隐的效果?

photoshop怎么制作人像渐隐的图片效果&#xff1f;渐隐效果需要使用渐变来实现&#xff0c;下面我们就来看看详细的教程。 首先&#xff0c;我们打开Photoshop&#xff0c;点击屏幕框选的【打开】&#xff0c;打开一张背景图片。 下面&#xff0c;我们点击左上角【文件】——【…