数据结构 day05

数据结构 day05

  • 5. 队列
    • 5.3. 链式队列
      • 5.3.1. 特征
      • 5.3.2. 代码实现
  • 6. 双向链表
    • 6.1. 特性
      • 6.2. 代码实现

5. 队列

5.3. 链式队列

5.3.1. 特征

逻辑结构:线性结构
存储结构:链式存储
操作:创建、入列、出列、判空、清空

5.3.2. 代码实现

头文件:linkqueue.h

#ifndef __LINKQUEUE_H__
#define __LINKQUEUE_H__
typedef int datatype;
typedef struct node_t
{datatype data;struct node_t *next;
} linkqueue_node_t, *linkqueue_list_t;typedef struct // 将队列头指针和尾指针封装到一个结构体里
{linkqueue_list_t front; // 相当于队列的头指针linkqueue_list_t rear;  // 相当于队列的尾指针// 有了链表的头指针和尾指针,那么我们就可以操作这个链表
} linkqueue_t;
//1.创建一个空的队列,用有头链表。
linkqueue_t *createEmptyLinkQueue();
//2.入列 data代表入列的数据
int inLinkQueue(linkqueue_t *p, datatype data);
// 3. 出列
//思想:每次释放front所指节点,然后移动front到后一个节点返回当前节点数据
datatype outLinkQueue(linkqueue_t *p);
//4.判断队列是否为空
int isEmptyLinkQueue(linkqueue_t *p);
//5.求队列长度的函数
int lengthLinkQueue(linkqueue_t *p);
//6.清空队列
void clearLinkQueue(linkqueue_t *p);
#endif
  1. 创建一个空的队列,用有头链表。
linkqueue_t *createEmptyLinkQueue();
{// 申请空间存放队列结构linkqueue_list_t q = (linkqueue_list_t)malloc(sizeof(linkqueue_node_t));if (q == NULL){perror("Space opening failure!!");return -1;}// 初始化q->next = NULL;// 申请空间存放头尾指针linkqueue_t *p = (linkqueue_t*) malloc(sizeof(linkqueue_t));if(p == NULL){perror("Space opening failure!!");free(q);return -1;}// 初始化p->front = q;p->rear = q;return p;
}
  1. 入列
int inLinkQueue(linkqueue_t *p, datatype data);
{// 开辟空间存放新节点,定义指针pnew指向新节点linkqueue_list_t pnew = (linkqueue_list_t)malloc(sizeof(linkqueue_node_t));// 容错判断if(pnew == NULL){perror("Space opening failure!!");return -1;}// 新节点初始化pnew->data = data;pnew->next = NULL;// 链接新节点p->rear->next = pnew;// 尾指针移动p->rear = pnew;return 0}
  1. 出列, 每次释放front所指下一个节点,然后移动front到后一个节点返回当前节点数据
datatype outLinkQueue(linkqueue_t *p);
{// 容错判断if(isEmptyLinkQueue(p)){perror("Linkqueue is empty!!");return -1;}// 定义指针pdel,指向被删除节点linkqueue_list_t pdel = p->front->next;// 定义变量,暂存出列数据datatype data = pdel->data;// 删除节点p->front->next = pdel->next;free(pdel);pdel = NULL;// 出列完成后,如果队列为空,那么召回rearif(p->front == NULL)p->rear = p->front;// 返回出列数据return data;
}
  1. 判断队列是否为空
int isEmptyLinkQueue(linkqueue_t *p);
{// 以队列的特性呈现return p->rear == p->front;
}

也可以使用p->front->next == NULL;来作为判断队列为空的条件,但这是链表特性的内容,作为队列的操作内容,尽量以队列的特性呈现

  1. 求队列长度的函数
int lengthLinkQueue(linkqueue_t *p);
{// 定义变量存放长度int len =0;// 定义头指针,头指针遍历链表linkqueue_list_t h = p->front;// 遍历链表while(h->next == NULL){h = h->next;len ++;}return len;
}

多定义一个头指针的原因:通过地址找到的front,所以对于front来说,相当于地址传递,所以改变front的指向会影响队头的值

  1. 清空队列
void clearLinkQueue(linkqueue_t *p);
{while(!isEmptyLinkQueue(p))outLinkQueue(p);
}

6. 双向链表

6.1. 特性

逻辑特性:线性结构
存储结构:链式存储
操作:增删改查
创建:模仿链式队列的形式创建
双向链表的创建结构图

6.2. 代码实现

头文件 doublelinklist.h

#ifndef __DOUBLELINKLIST_H__
#define __DOUBLELINKLIST_H__// 双向链表的节点定义typedef int datatype;
typedef struct node_t
{datatype data;        // 数据域struct node_t *next;  // 指向下一个节点的指针 next 先前的struct node_t *prior; // 指向前一个节点的指针 prior 下一个
} link_node_t, *link_node_p;// 将双向链表的头指针和尾指针封装到一个结构体里
// 思想上有点像学的链式队列
typedef struct doublelinklist
{link_node_p head; // 指向双向链表的头指针link_node_p tail; // 指向双向链表的尾指针int len;          // 用来保存当前双向链表的长度
} double_list_t, *double_list_p;//1.创建一个空的双向链表
double_list_p createEmptyDoubleLinkList();
// 2.向双向链表的指定位置插入数据 post位置, data数据
int insertIntoDoubleLinkList(double_list_p p, int post, datatype data);
// 3.遍历双向链表
void showDoubleLinkList(double_list_p p);
// 4.判断双向链表是否为空
int isEmptyDoubleLinkList(double_list_p p);
// 5.删除双向链表指定位置数据
int deletePostDoubleLinkList(double_list_p p, int post);
//6.求双向链表的长度
int lengthDoubleLinkList(double_list_p p);
//7.查找指定数据出现的位置 data被查找的数据
int searchPostDoubleLinkList(double_list_p p,datatype data);
//8.修改指定位置的数据,post修改的位置 data被修改的数据
int changeDataDoubleLinkList(double_list_p p,int post, datatype data)
// 9.删除双向链表中的指定数据 data代表删除所有出现的data数据
void deleteDataDoubleLinkList(double_list_p p, datatype data)#endif
  1. 创建一个空的双向链表
double_list_p createEmptyDoubleLinkList()
{// 申请空间存放头尾指针double_list_p p = (double_list_p)malloc(sizeof(double_list_t));if (p == NULL){perror("Space opening failure!!");return NULL;}// 申请空间存放头节点link_node_p ph = (link_node_p)malloc(sizeof(link_node_t));if (ph == NULL){perror("Space opening failure!!");free(p);p = NULL;return NULL;}// 头尾指针初始化,头节点初始化p->head = ph;p->tail = ph;p->len = 0;ph->next = NULL;ph->prior = NULL;return p;
}
  1. 向双向链表的指定位置插入数据 post位置, data数据
int insertIntoDoubleLinkList(double_list_p p, int post, datatype data)
{// 容错判断if (post < 0 || post > p->len){perror("post is err!!");return -1;}// 定义temp暂存head或taillink_node_p temp = NULL;// 定义pnew指向被插入节点link_node_p pnew = (link_node_p)malloc(sizeof(link_node_t));// 初始化pnew->data = data;pnew->prior = NULL;pnew->next = NULL;// 判断插入位置在前半段还是后半段if (post < p->len / 2){temp = p->head;for (int i = 0; i < post; i++)temp = temp->next;}else{temp = p->tail;for (int i = p->len - 1; i > post; i--)temp = temp->prior;}// 建立链接pnew->next = temp->next;pnew->prior = temp;temp->next = pnew;if (post == p->len)// 尾指针移动p->tail = pnew;elsepnew->next->prior = pnew;// 长度+1p->len++;
}
  1. 遍历双向链表
void showDoubleLinkList(double_list_p p)
{// 定义h,代替head移动遍历link_node_p temp = NULL;printf("正向遍历:");temp = p->head;while (temp->next != NULL){temp = temp->next;printf("%-4d", temp->data);}printf("\n");printf("反向遍历:");temp = p->tail;while (temp != p->head){printf("%-4d", temp->data);temp = temp->prior;}printf("\n");
}
  1. 判断双向链表是否为空
int isEmptyDoubleLinkList(double_list_p p)
{return p->len == 0;
}
  1. 删除双向链表指定位置数据
int deletePostDoubleLinkList(double_list_p p, int post)
{// 容错判断if (isEmptyDoubleLinkList(p) || post < 0 || post > p->len - 1){perror("deletePostDoubleLinkList err");return -1;}// 定义一个pdel指向被删除节点link_node_p pdel = NULL;// 判断前半段还是后半段if (post < p->len / 2){pdel = p->head;for (int i = 0; i <= post; i++)pdel = pdel->next;}else{pdel = p->tail;for (int i = p->len - 1; i >= post; i--)pdel = pdel->prior;}// 删除操作pdel->prior->next = pdel->next;if (pdel->next == NULL)p->tail = pdel->prior;elsepdel->next->prior = pdel->prior;return 0;
}
  1. 求双向链表的长度
int lengthDoubleLinkList(double_list_p p)
{return p->len;
}
  1. 查找指定数据出现的位置 data被查找的数据
// 7.查找指定数据出现的位置 data被查找的数据
int searchPostDoubleLinkList(double_list_p p, datatype data)
{// 定义temp指向头指针,代替头指针移动link_node_p temp = p->head;// 定义变量post,保存位置int post = 0;while (temp->next == NULL){temp = temp->next;if (temp->data == data)return post;post++;}return -1;
}
  1. 修改指定位置的数据,post修改的位置 data被修改的数据
int changeDataDoubleLinkList(double_list_p p,int post, datatype data)
{// 容错判断if (isEmptyDoubleLinkList(p) || post < 0 || post > p->len - 1){perror("changeDataDoubleLinkList err");return -1;}// 定义一个temp,代替头尾指针移动link_node_p temp = NULL;if (post < p->len / 2){temp = p->head;for (int i = 0; i <= post; i++)temp = temp->next;}else{temp = p->tail;for (int i = p->len - 1; i >= post; i--)temp = temp->prior;}// 修改数据temp->data = data;return 0;
}
  1. 删除双向链表中的指定数据 data代表删除所有出现的data数据
void deleteDataDoubleLinkList(double_list_p p, datatype data)
{// 定义pdel遍历,暂存被删除节点link_node_p pdel = p->head->next;// 遍历链表,直到pdel指向最后一个节点时停止while (pdel == p->tail){if (pdel->data == data){pdel->prior->next = pdel->next;pdel = pdel->prior;free(pdel->next->prior);pdel->next->prior = pdel;p->len--;}pdel = pdel->next;}// 判断最后一个节点数据是否匹配,匹配删除,不匹配就结束遍历if (pdel->data == data){p->len--;p->tail = pdel->prior;p->tail->next = NULL;free(pdel);}pdel = NULL;
}

从头节点后节点开始用指针pdel遍历,相当于遍历无头链表,遇到需要删除节点的就用pdel指向它然后删除,如果不需要删除则pdel继续往后走一个节点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/19498.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Uniapp 短视频去水印解析工具开发实现

最近搞了一个有意思的小工具——短视频去水印解析器&#xff01;这玩意儿可以把短视频中的水印给抹掉&#xff0c;还能提取视频、封面等资源。整个项目用了 Uniapp 开发&#xff0c;做完后体验了一下&#xff0c;发现还挺顺手。今天就来跟大家聊聊实现思路和代码细节~ 需求分析…

HTML【详解】input 标签

input 标签主要用于接收用户的输入&#xff0c;随 type 属性值的不同&#xff0c;变换其具体功能。 通用属性 属性属性值功能name字符串定义输入字段的名称&#xff0c;在表单提交时&#xff0c;服务器通过该名称来获取对应的值disabled布尔值禁用输入框&#xff0c;使其无法被…

什么是MVC?什么是SpringMVC?什么是三层架构?

文章目录 应用分层什么是MVC?什么是 SpringMVC&#xff1f;三层架构三层架构和MVC的关系 应用分层 在讲解什么是MVC之前&#xff0c;先来理解一下什么是应用分层。 应用分层是一种软件开发设计思想&#xff0c;将应用程序划分成N个层次&#xff0c;每个层次都分别负责自己…

【深度学习】深度学习和强化学习算法——深度 Q 网络DQN

深度 Q 网络&#xff08;Deep Q-Network, DQN&#xff09; 详解 什么是DQNDQN 的背景DQN 训练流程 2 DQN 的核心思想2.1 经验回放&#xff08;Experience Replay&#xff09;2.2 目标网络&#xff08;Target Network&#xff09;2.3 ε-贪心策略&#xff08;ε-Greedy Policy&a…

CSS flex布局 列表单个元素点击 本行下插入详情独占一行

技术栈&#xff1a;Vue2 javaScript 简介 在实际开发过程中有遇到一个场景&#xff1a;一个list&#xff0c;每行个数固定&#xff0c;点击单个元素后&#xff0c;在当前行与下一行之间插入一行元素详情&#xff0c;便于更直观的查看到对应的数据详情。 这种情形&#xff0c…

Deepseek本地部署

一&#xff0c;Deepseek本地部署方式 有UI且简单&#xff1a;LM Studio、Text Generation WebUI。 高效率但无UI&#xff1a;Ollama、LLama.cpp、Tabby。 二&#xff0c;通过Ollama本地部署Deepseek 1&#xff0c;什么是Ollama Ollama是一个开源的 LLM&#xff08;大型语言…

Django 创建表时 “__str__ ”方法的使用

在 Django 模型中&#xff0c;__str__ 方法是一个 Python 特殊方法&#xff08;也称为“魔术方法”&#xff09;&#xff0c;用于定义对象的字符串表示形式。它的作用是控制当对象被转换为字符串时&#xff0c;应该返回什么样的内容。 示例&#xff1a; 我在初学ModelForm时尝…

最新智能优化算法: 中华穿山甲优化( Chinese Pangolin Optimizer ,CPO)算法求解23个经典函数测试集,MATLAB代码

中华穿山甲优化&#xff08; Chinese Pangolin Optimizer &#xff0c;CPO&#xff09;算法由GUO Zhiqing 等人提出&#xff0c;该算法的灵感来自中华穿山甲独特的狩猎行为&#xff0c;包括引诱和捕食行为。 算法流程如下&#xff1a; 1. 开始 设置算法参数和最大迭代次数&a…

【云安全】云原生- K8S etcd 未授权访问

什么是etcd&#xff1f; etcd 是一个开源的分布式键值存储系统&#xff0c;主要用于存储和管理配置信息、状态数据以及服务发现信息。它采用 Raft 共识算法&#xff0c;确保数据的一致性和高可用性&#xff0c;能够在多个节点上运行&#xff0c;保证在部分节点故障时仍能继续提…

解锁建造者模式:Java 编程中的对象构建秘籍

系列文章目录 后续补充~~~~ 文章目录 一、引言二、建造者模式原理剖析2.1 定义与概念2.2 模式结构与角色2.2.1 产品&#xff08;Product&#xff09;2.2.2 建造者&#xff08;Builder&#xff09;2.2.3 具体建造者&#xff08;ConcreteBuilder&#xff09;2.2.4 指挥者&#xf…

ChatGPT行业热门应用提示词案例-AI绘画类

AI 绘画指令是一段用于指导 AI 绘画工具&#xff08;如 DALLE、Midjourney 等&#xff09;生成特定图像的文本描述。它通常包含场景、主体、风格、色彩、氛围等关键信息&#xff0c;帮助 AI 理解创作者的意图&#xff0c;从而生成符合要求的绘画作品。 ChatGPT 拥有海量的知识…

JUC并发—4.wait和notify以及Atomic原理

大纲 1.wait()与notify()实现一个简易的内存队列 2.wait()与notify()的底层原理 3.分布式存储系统NameNode机制介绍 4.分布式存储系统的edits log机制介绍 5.分布式存储系统的NameNode实现 6.分布式存储系统的创建目录功能的实现 7.edits log的全局txid机制和双缓冲机制…

ubuntu20.04声音设置

step1&#xff1a;打开pavucontrol&#xff0c;设置Configuration和Output Devices&#xff0c; 注意需要有HDMI / DisplayPort (plugged in)这个图标。如果没有&#xff0c;就先选择Configuration -> Digital Stereo (HDMI 7) Output (unplugged) (unvailable)&#xff0c;…

【网络安全 | 漏洞挖掘】价值3133美元的Google IDOR

未经许可,不得转载。 文章目录 正文正文 目标URL:REDACTED.google.com。 为了深入了解其功能,我查阅了 developer.google.com 上的相关文档,并开始进行测试。 在测试过程中,我发现了一个 XSS 漏洞,但它触发的域名是经过正确沙盒化的 *.googleusercontent.com,这符合 …

企业级API集成方案:基于阿里云函数计算调用DeepSeek全解析

解决方案链接&#xff1a;https://www.aliyun.com/solution/tech-solution/deepseek-r1-for-platforms?utm_contentg_1000401616 何为DeepSeek R1 DeepSeek R1模型有诸多技术优势。高效架构设计使其能更高效提取特征&#xff0c;减少冗余计算&#xff0c;提升数据处理速度、…

qt-C++笔记之QGraphicsScene和 QGraphicsView中setScene、通过scene得到view、通过view得scene

qt-C++笔记之QGraphicsScene和 QGraphicsView中setScene、通过scene得到view、通过view得scene code review! 文章目录 qt-C++笔记之QGraphicsScene和 QGraphicsView中setScene、通过scene得到view、通过view得scene1.`setScene` 方法2.通过 `scene` 获取它的视图 (`views()`)…

深度学习(1)-简单神经网络示例

我们来看一个神经网络的具体实例&#xff1a;使用Python的Keras库来学习手写数字分类。在这个例子中&#xff0c;我们要解决的问题是&#xff0c;将手写数字的灰度图像&#xff08;28像素28像素&#xff09;划分到10个类别中&#xff08;从0到9&#xff09;​。我们将使用MNIST…

【AI】Docker中快速部署Ollama并安装DeepSeek-R1模型: 一步步指南

【AI】Docker中快速部署Ollama并安装DeepSeek-R1模型: 一步步指南 一、前言 为了确保在 Docker 环境中顺利安装并高效运行 Ollama 以及 DeepSeek 离线模型&#xff0c;本文将详细介绍整个过程&#xff0c;涵盖从基础安装到优化配置等各个方面。通过对关键参数和配置的深入理解…

将OpenWrt部署在x86服务器上

正文共&#xff1a;1234 字 40 图&#xff0c;预估阅读时间&#xff1a;2 分钟 如果你问ChatGPT有哪些开源的SD-WAN方案&#xff0c;他会这样答复你&#xff1a; 我们看到&#xff0c;OpenWrt也属于比较知名的开源SD-WAN解决方案。当然&#xff0c;在很久之前&#xff0c;我就发…

【区块链】零知识证明基础概念详解

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 零知识证明基础概念详解引言1. 零知识证明的定义与特性1.1 基本定义1.2 三个核心…