【STM32】HAL库USB实现软件升级DFU的功能操作及配置

【STM32】HAL库USB实现软件升级DFU的功能操作及配置

文章目录

  • DFU
  • HAL库的DFU配置
  • 修改代码
  • 添加条件判断和跳转代码段
  • DFU烧录
  • 附录:Cortex-M架构的SysTick系统定时器精准延时和MCU位带操作
    • SysTick系统定时器精准延时
      • 延时函数
        • 阻塞延时
        • 非阻塞延时
    • 位带操作
      • 位带代码
        • 位带宏定义
        • 总线函数
      • 一、位带操作理论及实践
      • 二、如何判断MCU的外设是否支持位带

DFU

DFU是集成在STM32内部的一种功能 有的系列芯片有硬件DFU 而有的则只有软件模拟
在进入BootLeader模式后 支持DFU的芯片则除了可以通过串口0烧录外 还可以通过USB进行烧录
插上USB后 即可找到该驱动设备:
在这里插入图片描述
通过STM32官方的DfuSe软件 即可完成驱动安装并烧录.dfu文件

对于不进入BootLeader或没有硬件DFU的芯片 也可以采用USB模拟的DFU进行烧录
其相当于在用户代码区做了一个系统启动引导 然后再模拟DFU进行烧录

烧录后 板子运行时 默认进入引导代码段 然后通过判断条件 跳转到烧录后的代码段进行运行

HAL库的DFU配置

本文以STM32F407为开发环境进行测试 用的板子为极海的F407板子
其USB引脚连接如下:
在这里插入图片描述
开启USB_FS即可 这里选择Device_Only
在这里插入图片描述
NVIC中开启中断 其他不用改

如果使用HS(高速) 需要物理芯片
而FS则上拉电阻即可
具体看手册
然后在外设包中开启DFU
在这里插入图片描述

这里buff的大小可以根据实际需要来进行操作
烧录程序地址根据实际需求来改
一般俩说 0x0800 0000作为本引导工程的代码段
所以烧录的代码不能冲突

这一项则是配置VID PID 产商名称等等 默认即可:
在这里插入图片描述
最后生成文件 会自动导入ll库的USB
在这里插入图片描述
还会在工程下生成这几个文件
在这里插入图片描述
同时 导入头文件路径:
在这里插入图片描述
新建一个USB组 导入DFU和USB外设包(但不导入template文件)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

编译后不报错

修改代码

进入usbd_dfu_if.c文件 添加Flash操作相关代码
分别是 上锁、解锁、擦除、写入、读取、返回Flash操作时间

根据不同芯片的需求来改
【STM32】HAL库Flash读写操作及配置(L4和F4系列不同操作、HAL_FLASH_ERROR_PGA报错的解决方案)
我的修改为:

/* Private functions ---------------------------------------------------------*/
/*** @brief  Memory initialization routine.* @retval USBD_OK if operation is successful, MAL_FAIL else.*/
uint16_t MEM_If_Init_FS(void)
{/* USER CODE BEGIN 0 */HAL_FLASH_Unlock();__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR);return (USBD_OK);/* USER CODE END 0 */
}/*** @brief  De-Initializes Memory* @retval USBD_OK if operation is successful, MAL_FAIL else*/
uint16_t MEM_If_DeInit_FS(void)
{/* USER CODE BEGIN 1 */HAL_FLASH_Lock();return (USBD_OK);/* USER CODE END 1 */
}/*** @brief  Erase sector.* @param  Add: Address of sector to be erased.* @retval 0 if operation is successful, MAL_FAIL else.*/
uint16_t MEM_If_Erase_FS(uint32_t Add)
{/* USER CODE BEGIN 2 */UNUSED(Add);uint32_t error = 0;FLASH_EraseInitTypeDef flash_dat;          //定义一个结构体变量,里面有擦除操作需要定义的变量HAL_FLASH_Unlock();                                    //第二步:解锁                        flash_dat.TypeErase = FLASH_TYPEERASE_SECTORS;         //擦除类型是“Page Erase” 仅删除页面 另外一个参数是全部删除flash_dat.Sector = FLASH_SECTOR_5;            //擦除地址对应的页flash_dat.NbSectors = 1;                               //一次性擦除1页,可以是任意页flash_dat.Banks=FLASH_BANK_1;flash_dat.VoltageRange=FLASH_VOLTAGE_RANGE_3;HAL_FLASHEx_Erase(&flash_dat,&error);            //第三步:参数写好后调用擦除函数return (USBD_OK);/* USER CODE END 2 */
}/*** @brief  Memory write routine.* @param  src: Pointer to the source buffer. Address to be written to.* @param  dest: Pointer to the destination buffer.* @param  Len: Number of data to be written (in bytes).* @retval USBD_OK if operation is successful, MAL_FAIL else.*/
uint16_t MEM_If_Write_FS(uint8_t *src, uint8_t *dest, uint32_t Len)
{/* USER CODE BEGIN 3 */UNUSED(src);UNUSED(dest);UNUSED(Len);uint32_t i = 0;for(i=0;i<Len;i+=4){		HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD, (uint32_t)(dest + i), *(uint32_t *)(src + i));if(*(uint32_t *)(src + i) != *(uint32_t *)(dest + i)){/* Flash content doesn't match SRAM content */return (USBD_FAIL);}}return (USBD_OK);/* USER CODE END 3 */
}/*** @brief  Memory read routine.* @param  src: Pointer to the source buffer. Address to be written to.* @param  dest: Pointer to the destination buffer.* @param  Len: Number of data to be read (in bytes).* @retval Pointer to the physical address where data should be read.*/
uint8_t *MEM_If_Read_FS(uint8_t *src, uint8_t *dest, uint32_t Len)
{/* Return a valid address to avoid HardFault *//* USER CODE BEGIN 4 */UNUSED(src);UNUSED(dest);UNUSED(Len);uint32_t i = 0;uint8_t *psrc = src;for (i = 0; i < Len; i++){dest[i] = *psrc++;}/* Return a valid address to avoid HardFault */return (uint8_t *)(dest);/* USER CODE END 4 */
}/*** @brief  Get status routine* @param  Add: Address to be read from* @param  Cmd: Number of data to be read (in bytes)* @param  buffer: used for returning the time necessary for a program or an erase operation* @retval USBD_OK if operation is successful*/
uint16_t MEM_If_GetStatus_FS(uint32_t Add, uint8_t Cmd, uint8_t *buffer)
{/* USER CODE BEGIN 5 */UNUSED(Add);UNUSED(buffer);uint16_t FLASH_PROGRAM_TIME = 50;uint16_t FLASH_ERASE_TIME = 50;switch(Cmd){case DFU_MEDIA_PROGRAM:buffer[1] = (uint8_t)FLASH_PROGRAM_TIME;buffer[2] = (uint8_t)(FLASH_PROGRAM_TIME << 8);buffer[3] = 0;break;case DFU_MEDIA_ERASE:default:buffer[1] = (uint8_t)FLASH_ERASE_TIME;}return (USBD_OK);/* USER CODE END 5 */
}

因为我的F407设置的APP地址段是0x0802 0000
所以我擦除的片区是固定的
但每次烧录也只能在这块区域执行 并且要控制大小为128k
如图:
在这里插入图片描述

添加条件判断和跳转代码段

在main.c中 自动执行了DFU初始化
在这里插入图片描述
若需要复位重连 则可以复位USB(D+和D-低电平10ms以上)

在循环中可以添加条件判断代码 以实现APP跳转
在这里插入图片描述

【STM32】MCU代码段跳转、运行多段代码,Flash程序更新的实现方式之一

在DFU部分 就能够执行烧录 不过需要注意的是 烧录的工程编译时 也必须修改用户代码起始位为跳转的地址
在这里插入图片描述

并且要修改中断向量表的地址偏移(宏定义中要定义使用用户偏移)
在这里插入图片描述
实际上 这个DFU工程只是个引导 真正的APP代码区域为跳转后的
所以当没有条件跳转时 就是执行DFU的功能
可以添加Flash标志位判断、按键判断等方式进行跳转
跳转到APP后 若出现硬件错误 也可以通过置位的方式告知引导程序APP烧录错误 需要重新烧录等

当然 DFU引导程序也可以执行一些简单的功能 不过还是建议在进入DFU烧录模式后 直接进while 1

DFU烧录

驱动安装好后 DFU驱动就显示正常了
在这里插入图片描述
对要烧录的工程编译后 通过hex、bin文件转成dfu文件才能进行烧录
且 烧录时 需要修改文件地址(工程、引导代码区跳转和烧录时都改成统一的地址)

在这里插入图片描述

附录:Cortex-M架构的SysTick系统定时器精准延时和MCU位带操作

SysTick系统定时器精准延时

延时函数

SysTick->LOAD中的值为计数值
计算方法为工作频率值/分频值
比如工作频率/1000 则周期为1ms

以ADuCM4050为例:

#include "ADuCM4050.h"void delay_ms(unsigned int ms)
{SysTick->LOAD = 26000000/1000-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能52MHz的系统定时器while(ms--){while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待}SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}
void delay_us(unsigned int us)
{SysTick->LOAD = 26000000/1000/1000-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能52MHz的系统定时器while(us--){while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待}SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}

其中的52000000表示芯片的系统定时器频率 32系列一般为外部定时器频率的两倍

Cortex-M架构SysTick系统定时器阻塞和非阻塞延时

阻塞延时

首先是最常用的阻塞延时

void delay_ms(unsigned int ms)
{SysTick->LOAD = 50000000/1000-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器while(ms--){while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待}SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}
void delay_us(unsigned int us)
{SysTick->LOAD = 50000000/1000/1000-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器while(us--){while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待}SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}

50000000表示工作频率
分频后即可得到不同的延时时间
以此类推

那么 不用两个嵌套while循环 也可以写成:

void delay_ms(unsigned int ms)
{SysTick->LOAD = 50000000/1000*ms-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}
void delay_us(unsigned int us)
{SysTick->LOAD = 50000000/1000/1000*us-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}

但是这种写法有个弊端
那就是输入ms后,最大定时不得超过计数值,也就是不能超过LOAD的最大值,否则溢出以后,则无法正常工作

而LOAD如果最大是32位 也就是4294967295

晶振为50M的话 50M的计数值为1s 4294967295计数值约为85s

固最大定时时间为85s

但用嵌套while的话 最大可以支持定时4294967295*85s

非阻塞延时

如果采用非阻塞的话 直接改写第二种方法就好了:

void delay_ms(unsigned int ms)
{SysTick->LOAD = 50000000/1000*ms-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器//while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待//SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}
void delay_us(unsigned int us)
{SysTick->LOAD = 50000000/1000/1000*us-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器//while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待//SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}

将等待和关闭定时器语句去掉
在使用时加上判断即可变为阻塞:

delay_ms(500);
while ((SysTick->CTRL & 0x00010000)==0);
SysTick->CTRL = 0;

在非阻塞状态下 可以提交定时器后 去做别的事情 然后再来等待

不过这样又有一个弊端 那就是定时器会自动重载 可能做别的事情以后 定时器跑过了 然后就要等85s才能停下

故可以通过内部定时器来进行非阻塞延时函数的编写

基本上每个mcu的内部定时器都可以配置自动重载等功能 网上资料很多 这里就不再阐述了

位带操作

位带代码

M3、M4架构的单片机 其输出口地址为端口地址+20 输入为+16
M0架构的单片机 其输出口地址为端口地址+12 输入为+8
以ADuCM4050为列:

位带宏定义
#ifndef __GPIO_H__
#define __GPIO_H__
#include "ADuCM4050.h"
#include "adi_gpio.h"#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) 
#define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
#define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum))#define GPIO0_ODR_Addr    (ADI_GPIO0_BASE+20) //0x40020014
#define GPIO0_IDR_Addr    (ADI_GPIO0_BASE+16) //0x40020010#define GPIO1_ODR_Addr    (ADI_GPIO1_BASE+20) //0x40020054
#define GPIO1_IDR_Addr    (ADI_GPIO1_BASE+16) //0x40020050#define GPIO2_ODR_Addr    (ADI_GPIO2_BASE+20) //0x40020094
#define GPIO2_IDR_Addr    (ADI_GPIO2_BASE+16) //0x40020090#define GPIO3_ODR_Addr    (ADI_GPIO3_BASE+20) //0x400200D4
#define GPIO3_IDR_Addr    (ADI_GPIO3_BASE+16) //0x400200D0#define P0_O(n)   	BIT_ADDR(GPIO0_ODR_Addr,n)  //输出 
#define P0_I(n)    	BIT_ADDR(GPIO0_IDR_Addr,n)  //输入 #define P1_O(n)   	BIT_ADDR(GPIO1_ODR_Addr,n)  //输出 
#define P1_I(n)    	BIT_ADDR(GPIO1_IDR_Addr,n)  //输入 #define P2_O(n)   	BIT_ADDR(GPIO2_ODR_Addr,n)  //输出 
#define P2_I(n)    	BIT_ADDR(GPIO2_IDR_Addr,n)  //输入 #define P3_O(n)   	BIT_ADDR(GPIO3_ODR_Addr,n)  //输出 
#define P3_I(n)    	BIT_ADDR(GPIO3_IDR_Addr,n)  //输入 #define Port0			(ADI_GPIO_PORT0)
#define Port1			(ADI_GPIO_PORT1)
#define Port2			(ADI_GPIO_PORT2)
#define Port3			(ADI_GPIO_PORT3)#define Pin0			(ADI_GPIO_PIN_0)
#define Pin1			(ADI_GPIO_PIN_1)
#define Pin2			(ADI_GPIO_PIN_2)
#define Pin3			(ADI_GPIO_PIN_3)
#define Pin4			(ADI_GPIO_PIN_4)
#define Pin5			(ADI_GPIO_PIN_5)
#define Pin6			(ADI_GPIO_PIN_6)
#define Pin7			(ADI_GPIO_PIN_7)
#define Pin8			(ADI_GPIO_PIN_8)
#define Pin9			(ADI_GPIO_PIN_9)
#define Pin10			(ADI_GPIO_PIN_10)
#define Pin11			(ADI_GPIO_PIN_11)
#define Pin12			(ADI_GPIO_PIN_12)
#define Pin13			(ADI_GPIO_PIN_13)
#define Pin14			(ADI_GPIO_PIN_14)
#define Pin15			(ADI_GPIO_PIN_15)void GPIO_OUT(unsigned int port,unsigned int pin,unsigned int flag);
void GPIO_BUS_OUT(unsigned int port,unsigned int num);void P0_BUS_O(unsigned int num);
unsigned int P0_BUS_I(void);void P1_BUS_O(unsigned int num);
unsigned int P1_BUS_I(void);void P2_BUS_O(unsigned int num);
unsigned int P2_BUS_I(void);void P3_BUS_O(unsigned int num);
unsigned int P3_BUS_I(void);#endif
总线函数
#include "ADuCM4050.h"
#include "adi_gpio.h"
#include "GPIO.h"void GPIO_OUT(unsigned int port,unsigned int pin,unsigned int flag)
{switch(port){case 0:{switch(pin){case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_0));};break;case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_1));};break;case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_2));};break;case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_3));};break;case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_4));};break;case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_5));};break;case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_6));};break;case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_7));};break;case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_8));};break;case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_9));};break;case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_10));};break;case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_11));};break;case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_12));};break;case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_13));};break;case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_14));};break;case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_15));};break;default:pin=0;break;}}break;case 1:{switch(pin){case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_0));};break;case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_1));};break;case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_2));};break;case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_3));};break;case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_4));};break;case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_5));};break;case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_6));};break;case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_7));};break;case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_8));};break;case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_9));};break;case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_10));};break;case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_11));};break;case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_12));};break;case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_13));};break;case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_14));};break;case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_15));};break;default:pin=0;break;}}break;case 2:{switch(pin){case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_0));};break;case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_1));};break;case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_2));};break;case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_3));};break;case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_4));};break;case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_5));};break;case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_6));};break;case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_7));};break;case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_8));};break;case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_9));};break;case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_10));};break;case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_11));};break;case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_12));};break;case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_13));};break;case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_14));};break;case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_15));};break;default:pin=0;break;}}break;case 3:{switch(pin){case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_0));};break;case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_1));};break;case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_2));};break;case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_3));};break;case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_4));};break;case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_5));};break;case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_6));};break;case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_7));};break;case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_8));};break;case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_9));};break;case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_10));};break;case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_11));};break;case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_12));};break;case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_13));};break;case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_14));};break;case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_15));};break;default:pin=0;break;}}break;default:port=0;break;}	
}void GPIO_BUS_OUT(unsigned int port,unsigned int num)  //num最大为0xffff
{int i;for(i=0;i<16;i++){GPIO_OUT(port,i,(num>>i)&0x0001);}
}void P0_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){P0_O(i)=(num>>i)&0x0001;}
}
unsigned int P0_BUS_I(void)  //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(P0_I(i)<<i)&0xFFFF;}return num;
}void P1_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){P1_O(i)=(num>>i)&0x0001;}
}
unsigned int P1_BUS_I(void)  //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(P1_I(i)<<i)&0xFFFF;}return num;
}void P2_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){P2_O(i)=(num>>i)&0x0001;}
}
unsigned int P2_BUS_I(void)  //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(P2_I(i)<<i)&0xFFFF;}return num;
}void P3_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){P3_O(i)=(num>>i)&0x0001;}
}
unsigned int P3_BUS_I(void)  //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(P3_I(i)<<i)&0xFFFF;}return num;
}

一、位带操作理论及实践

位带操作的概念其实30年前就有了,那还是 CM3 将此能力进化,这里的位带操作是 8051 位寻址区的威力大幅加强版

位带区: 支持位带操作的地址区

位带别名: 对别名地址的访问最终作 用到位带区的访问上(注意:这中途有一个 地址映射过程)

位带操作对于硬件 I/O 密集型的底层程序最有用处

支持了位带操作后,可以使用普通的加载/存储指令来对单一的比特进行读写。在CM4中,有两个区中实现了位带。其中一个是SRAM区的最低1MB范围,第二个则是片内外设区的最低1MB范围。这两个区中的地址除了可以像普通的RAM一样使用外,它们还都有自己的“位带别名区”,位带别名区把每个比特膨胀成一个32位的字。当你通过位带别名区访问这些字时,就可以达到访问原始比特的目的。

位操作就是可以单独的对一个比特位读和写,类似与51中sbit定义的变量,stm32中通过访问位带别名区来实现位操作的功能
STM32中有两个地方实现了位带,一个是SRAM,一个是片上外设。
在这里插入图片描述
(1)位带本质上是一块地址区(例如每一位地址位对应一个寄存器)映射到另一片地址区(实现每一位地址位对应一个寄存器中的一位),该区域就叫做位带别名区,将每一位膨胀成一个32位的字。
(2)位带区的4个字节对应实际寄存器或内存区的一个位,虽然变大到4个字节,但实际上只有最低位有效(代表0或1)

只有位带可以直接用=赋值的方式来操作寄存器 位带是把寄存器上的每一位 膨胀到32位 映射到位带区 比如0x4002 0000地址的第0个bit 映射到位带区的0地址 那么其对应的位带映射地址为0x00 - 0x04 一共32位 但只有LSB有效 采用位带的方式用=赋值时 就是把位带区对应的LSB赋值 然后MCU再转到寄存器对应的位里面 寄存器操作时 如果不改变其他位上面的值 那就只能通过&=或者|=的方式进行

在这里插入图片描述

要设置0x2000 0000这个字节的第二个位bit2为1,使用位带操作的步骤有:
1、将1写入位 带别名区对应的映射地址(即0x22000008,因为1bit对应4个byte);
2、将0x2000 0000的值 读取到内部的缓冲区(这一步骤是内核完成的,属于原子操作,不需要用户操作);
3、将bit2置1,再把值写 回到0x2000 0000(属于原子操作,不需要用户操作)。

关于GPIO引脚对应的访问地址,可以参考以下公式
寄存器位带别名 = 0x42000000 + (寄存器的地址-0x40000000)32 + 引脚编号4

如:端口F访问的起始地址GPIOF_BASE

#define GPIOF ((GPIO_TypeDef *)GPIOF_BASE)

在这里插入图片描述

但好在官方库里面都帮我们定义好了 只需要在BASE地址加上便宜即可

例如:

GPIOF的ODR寄存器的地址 = GPIOF_BASE + 0x14

寄存器位带别名 = 0x42000000 + (寄存器的地址-0x40000000)32 + 引脚编号4

设置PF9引脚的话:

uint32_t *PF9_BitBand =
*(uint32_t *)(0x42000000 + ((uint32_t )&GPIOF->ODR– 0x40000000) *32 + 9*4)

封装一下:

#define PFout(x) *(volatile uint32_t *)(0x42000000 + ((uint32_t )&GPIOF->ODR – 0x40000000) *32 + x*4)

现在 可以把通用部分封装成一个小定义:

#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) 
#define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
#define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum))

那么 设置PF引脚的函数可以定义:

#define GPIOF_ODR_Addr    (GPIOF_BASE+20) //0x40021414   
#define GPIOF_IDR_Addr    (GPIOF_BASE+16) //0x40021410 #define PF_O(n)   	BIT_ADDR(GPIOF_ODR_Addr,n)  //输出 
#define PF_I(n)    	BIT_ADDR(GPIOF_IDR_Addr,n)  //输入

若使PF9输入输出则:

PF_O(9)=1;  //输出高电平
uint8_t dat = PF_I(9);  //获取PF9引脚的值

总线输入输出:

void PF_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PF_O(i)=(num>>i)&0x0001;}
}
unsigned int PF_BUS_I(void)  //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PF_I(i)<<i)&0xFFFF;}return num;
}

STM32的可用下面的函数:

#ifndef __GPIO_H__
#define __GPIO_H__
#include "stm32l496xx.h"#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) 
#define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
#define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum))#define GPIOA_ODR_Addr    (GPIOA_BASE+20) //0x40020014
#define GPIOB_ODR_Addr    (GPIOB_BASE+20) //0x40020414 
#define GPIOC_ODR_Addr    (GPIOC_BASE+20) //0x40020814 
#define GPIOD_ODR_Addr    (GPIOD_BASE+20) //0x40020C14 
#define GPIOE_ODR_Addr    (GPIOE_BASE+20) //0x40021014 
#define GPIOF_ODR_Addr    (GPIOF_BASE+20) //0x40021414    
#define GPIOG_ODR_Addr    (GPIOG_BASE+20) //0x40021814   
#define GPIOH_ODR_Addr    (GPIOH_BASE+20) //0x40021C14    
#define GPIOI_ODR_Addr    (GPIOI_BASE+20) //0x40022014     #define GPIOA_IDR_Addr    (GPIOA_BASE+16) //0x40020010 
#define GPIOB_IDR_Addr    (GPIOB_BASE+16) //0x40020410 
#define GPIOC_IDR_Addr    (GPIOC_BASE+16) //0x40020810 
#define GPIOD_IDR_Addr    (GPIOD_BASE+16) //0x40020C10 
#define GPIOE_IDR_Addr    (GPIOE_BASE+16) //0x40021010 
#define GPIOF_IDR_Addr    (GPIOF_BASE+16) //0x40021410 
#define GPIOG_IDR_Addr    (GPIOG_BASE+16) //0x40021810 
#define GPIOH_IDR_Addr    (GPIOH_BASE+16) //0x40021C10 
#define GPIOI_IDR_Addr    (GPIOI_BASE+16) //0x40022010 #define PA_O(n)   	BIT_ADDR(GPIOA_ODR_Addr,n)  //输出 
#define PA_I(n)    	BIT_ADDR(GPIOA_IDR_Addr,n)  //输入 #define PB_O(n)   	BIT_ADDR(GPIOB_ODR_Addr,n)  //输出 
#define PB_I(n)    	BIT_ADDR(GPIOB_IDR_Addr,n)  //输入 #define PC_O(n)   	BIT_ADDR(GPIOC_ODR_Addr,n)  //输出 
#define PC_I(n)    	BIT_ADDR(GPIOC_IDR_Addr,n)  //输入 #define PD_O(n)   	BIT_ADDR(GPIOD_ODR_Addr,n)  //输出 
#define PD_I(n)    	BIT_ADDR(GPIOD_IDR_Addr,n)  //输入 #define PE_O(n)   	BIT_ADDR(GPIOE_ODR_Addr,n)  //输出 
#define PE_I(n)    	BIT_ADDR(GPIOE_IDR_Addr,n)  //输入#define PF_O(n)   	BIT_ADDR(GPIOF_ODR_Addr,n)  //输出 
#define PF_I(n)    	BIT_ADDR(GPIOF_IDR_Addr,n)  //输入#define PG_O(n)   	BIT_ADDR(GPIOG_ODR_Addr,n)  //输出 
#define PG_I(n)    	BIT_ADDR(GPIOG_IDR_Addr,n)  //输入#define PH_O(n)   	BIT_ADDR(GPIOH_ODR_Addr,n)  //输出 
#define PH_I(n)    	BIT_ADDR(GPIOH_IDR_Addr,n)  //输入#define PI_O(n)			BIT_ADDR(GPIOI_ODR_Addr,n)  //输出 
#define PI_I(n)   	BIT_ADDR(GPIOI_IDR_Addr,n)  //输入void PA_BUS_O(unsigned int num);
unsigned int PA_BUS_I(void);void PB_BUS_O(unsigned int num);
unsigned int PB_BUS_I(void);void PC_BUS_O(unsigned int num);
unsigned int PC_BUS_I(void);void PD_BUS_O(unsigned int num);
unsigned int PD_BUS_I(void);void PE_BUS_O(unsigned int num);
unsigned int PE_BUS_I(void);void PF_BUS_O(unsigned int num);
unsigned int PF_BUS_I(void);void PG_BUS_O(unsigned int num);
unsigned int PG_BUS_I(void);void PH_BUS_O(unsigned int num);
unsigned int PH_BUS_I(void);void PI_BUS_O(unsigned int num);
unsigned int PI_BUS_I(void);#endif
#include "GPIO.h"void PA_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PA_O(i)=(num>>i)&0x0001;}
}
unsigned int PA_BUS_I(void)  //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PA_I(i)<<i)&0xFFFF;}return num;
}void PB_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PB_O(i)=(num>>i)&0x0001;}
}
unsigned int PB_BUS_I(void)  //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PB_I(i)<<i)&0xFFFF;}return num;
}void PC_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PC_O(i)=(num>>i)&0x0001;}
}
unsigned int PC_BUS_I(void)  //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PC_I(i)<<i)&0xFFFF;}return num;
}void PD_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PD_O(i)=(num>>i)&0x0001;}
}
unsigned int PD_BUS_I(void)  //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PD_I(i)<<i)&0xFFFF;}return num;
}void PE_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PE_O(i)=(num>>i)&0x0001;}
}
unsigned int PE_BUS_I(void)  //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PE_I(i)<<i)&0xFFFF;}return num;
}void PF_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PF_O(i)=(num>>i)&0x0001;}
}
unsigned int PF_BUS_I(void)  //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PF_I(i)<<i)&0xFFFF;}return num;
}void PG_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PG_O(i)=(num>>i)&0x0001;}
}
unsigned int PG_BUS_I(void)  //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PG_I(i)<<i)&0xFFFF;}return num;
}void PH_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PH_O(i)=(num>>i)&0x0001;}
}
unsigned int PH_BUS_I(void)  //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PH_I(i)<<i)&0xFFFF;}return num;
}void PI_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{int i;for(i=0;i<16;i++){PI_O(i)=(num>>i)&0x0001;}
}
unsigned int PI_BUS_I(void)  //输出值num最大为0xFFFF
{unsigned int num;int i;for(i=0;i<16;i++){num=num+(PI_I(i)<<i)&0xFFFF;}return num;
}

二、如何判断MCU的外设是否支持位带

根据《ARM Cortex-M3与Cortex-M4权威指南(第3版)》中第6章第7节描述
在这里插入图片描述
也就是说 要实现对GPIO的位带操作 必须保证GPIO位于外设区域的第一个1MB中
第一个1MB应该是0x4010 0000之前 位带不是直接操作地址 而是操作地址映射 地址映射被操作以后 MCU自动会修改对应寄存器的值

位带区只有1MB 所以只能改0x4000 0000 - 0x400F FFFF的寄存器
像F4系列 GPIO的首地址为0x4002 0000 就可以用位带来更改

STM32L476的GPIO就不行:
在这里插入图片描述
AHB2的都不能用位带
ABP 还有AHB1都可以用
在这里插入图片描述
但是L476的寄存器里面 GPIO和ADC都是AHB2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/2047.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

kotlin的dagger hilt依赖注入

依赖注入&#xff08;dependency injection, di&#xff09;是设计模式的一种&#xff0c;它的实际作用是给对象赋予实例变量。 基础认识 class MainActivity : ComponentActivity() {override fun onCreate(savedInstanceState: Bundle?) {super.onCreate(savedInstanceSta…

Uniapp判断设备是安卓还是 iOS,并调用不同的方法

在 UniApp 中&#xff0c;可以通过 uni.getSystemInfoSync() 方法来获取设备信息&#xff0c;然后根据系统类型判断当前设备是安卓还是 iOS&#xff0c;并调用不同的方法。 示例代码 export default {onLoad() {this.checkPlatform();},methods: {checkPlatform() {// 获取系…

【MySQL】MVCC详解, 图文并茂简单易懂

欢迎来到啊妮莫的学习小屋 祝读本文的朋友都天天开心呀 目录 MVCC简介快照读与当前读快照读当前读 隔离级别隐藏字段和Undo Log版本链✨MVCC原理--ReadView✨ReadView简介设计思路适用隔离级别重要内容 ReadView规则MVCC整体流程 不同隔离级别下的MVCC读已提交可重复读 总结 M…

VSCode Live Server 插件安装和使用

VSCode Live Server是一个由Ritwick Dey开发的Visual Studio Code扩展插件&#xff0c;它提供了一个带有实时重载功能的本地开发服务器。在VSCode中安装和使用Live Server插件进行实时预览和调试Web应用程序。这将大大提高前端开发效率&#xff0c;使网页设计和开发变得更为流畅…

MC1.12.2 macOS高清修复OptiFine运行崩溃

最近在玩RLCraft&#xff0c;在windows中运行正常的&#xff0c;移植到macOS中发现如果加载OptiFine模组就会崩溃 报错日志 报错日志如下&#xff0c;其中已经包含了各种版本信息&#xff0c;我就不单独说明了。这里说一下&#xff0c;报错的时候用的是oracle jdk x64的&…

医学图像分割半监督学习记录

半监督学习中&#xff0c;一部分数据带标签&#xff0c;一部分不带标签&#xff0c;在模型训练过程中&#xff0c;带标签的数据我们注重分类&#xff0c;无标签的数据我们注重分布。 半监督坚持一致性正则&#xff08;consistency regularization&#xff09;来进行半监督学习&…

12 USART串口通讯

1 串口物理层 两个设备的“DB9接口”之间通过串口信号建立连接&#xff0c;串口信号线中使用“RS232标准”传输数据信号。由于RS232电平标准的信号不能直接被控制器直接识别&#xff0c;所以这些信号会经过“电平转换芯片”转换成控制器能识别的“TTL校准”的电平信号&#xff…

工程水印相机结合图纸,真实现场时间地点,如何使用水印相机,超简单方法只教一次!

在工程管理领域&#xff0c;精准记录现场信息至关重要。水印相机拍照功能&#xff0c;为工程人员提供了强大的现场信息记录工具&#xff0c;助力工程管理和统计工程量&#xff0c;更可以将图片分享到电脑、分享给同事&#xff0c;协同工作。 一、打开图纸 打开手机版CAD快速看图…

abap安装cl_json类

文章来自 SAP根据源码导入/ui2/cl_json类 - pikeduo - 博客园 新建一个se38程序&#xff0c;把源码放到里&#xff0c;源码如下 *----------------------------------------------------------------------* * CLASS zcl_json DEFINITION *----------------------------…

day09_kafka高级

文章目录 kafka高级今日课程内容核心概念整理Kafka的数据位移offset**为什么 Kafka 的 offset 就像是“书签”&#xff1f;****实际意义** Kafka的基准/压力测试测试生产的效率测试消费的效率 Kafka的分片与副本机制kafka如何保证数据不丢失生产者端Broker端消费者端相关参数 K…

vue2制作长方形容器,正方形网格散点图,并且等比缩放拖动

需求&#xff1a;有个长方形的容器&#xff0c;但是需要正方形的网格线&#xff0c;网格线是等比缩放的并且可以无线拖动的&#xff0c;并且添加自适应缩放和动态切换&#xff0c;工具是plotly.js,已完成功能如下 1.正方形网格 2.散点分组 3.自定义悬浮框的数据 4.根据窗口大小…

Spring Boot 2 学习指南与资料分享

Spring Boot 2 学习资料 Spring Boot 2 学习资料 Spring Boot 2 学习资料 在当今竞争激烈的 Java 后端开发领域&#xff0c;Spring Boot 2 凭借其卓越的特性&#xff0c;为开发者们开辟了一条高效、便捷的开发之路。如果你渴望深入学习 Spring Boot 2&#xff0c;以下这份精心…

【PyQt】如何在mainwindow中添加菜单栏

[toc]如何在mainwindow中添加菜单栏 如何在mainwindow中添加菜单栏 主要有两种方法&#xff1a; 1.直接创建mainwindow进行添加 2.使用ui文件加载添加 第二种方法更为常见&#xff0c;可以应用到实际 1.直接创建mainwindow进行添加 import sysfrom PyQt5.QtWidgets import …

Vue如何构建项目

目录 1.安装Node.js 2.换源(建议) 3.选择一个目录 4.创建一个vue项目 5.验证是否成功 1.安装Node.js 安装18.3或更⾼版本的 Nodejs 点击下载->Node.Js中文网 node -v npm -v 安装好后在windows的cmd窗口下运行 如果能运行出结果就说明安装好了。 2.换源(建议) //…

uniapp 小程序 textarea 层级穿透,聚焦光标位置错误怎么办?

前言 在开发微信小程序时&#xff0c;使用 textarea 组件可能会遇到一些棘手的问题。最近我在使用 uniapp 开发微信小程序时&#xff0c;就遇到了两个非常令人头疼的问题&#xff1a; 层级穿透&#xff1a;由于 textarea 是原生组件&#xff0c;任何元素都无法遮盖住它。当其…

[c语言日寄]精英怪:三子棋(tic-tac-toe)3命慢通[附免费源码]

哈喽盆友们&#xff0c;今天带来《c语言》游戏中[三子棋boss]速通教程&#xff01;我们的目标是一边编写博文&#xff0c;一边快速用c语言实现三子棋游戏。准备好瓜子&#xff0c;我们计时开始&#xff01; 前期规划 在速通中&#xff0c;我们必须要有清晰的前期规划&#xf…

Chatper 4: Implementing a GPT model from Scratch To Generate Text

文章目录 4 Implementing a GPT model from Scratch To Generate Text4.1 Coding an LLM architecture4.2 Normalizing activations with layer normalization4.3 Implementing a feed forward network with GELU activations4.4 Adding shortcut connections4.5 Connecting at…

【Vim Masterclass 笔记13】第 7 章:Vim 核心操作之——文本对象与宏操作 + S07L28:Vim 文本对象

文章目录 Section 7&#xff1a;Text Objects and MacrosS07L28 Text Objects1 文本对象的含义2 操作文本对象的基本语法3 操作光标所在的整个单词4 删除光标所在的整个句子5 操作光标所在的整个段落6 删除光标所在的中括号内的文本7 删除光标所在的小括号内的文本8 操作尖括号…

Termora跨平台 SSH/SFTP/Terminal 客户端工具

前言 Termora一款强大的终端模拟与SSH客户端工具&#xff0c;集SFTP传输、跨平台兼容、Zmodem协议、SSH端口转发、配置同步、宏录制、关键词高亮、密钥管理、多会话命令发送及数据加密于一体&#xff0c;专为追求高效远程工作的您设计。无论是开发、管理还是日常任务&#xff…

音视频入门基础:RTP专题(1)——RTP官方文档下载

一、引言 实时传输协议&#xff08;Real-time Transport Protocol&#xff0c;简写RTP&#xff09;是一个网络传输协议&#xff0c;由IETF的多媒体传输工作小组1996年在《RFC 1889》中公布的。 RTP作为因特网标准在《RFC 3550》有详细说明。而《RFC 3551》详细描述了使用最小…