Agent举例与应用

什么是Agent

OpenAI 应用研究主管 Lilian Weng 在一篇长文中提出了 Agent = LLM(大型语言模型)+记忆+规划技能+工具使用这一概念,并详细解释了Agent的每个模块的功能。她对Agent未来的应用前景充满信心,但也表明到挑战无处不在。

现有的 Agents 项目如 AutoGPT,BabyAGI 和 MetaGPT 的成功验证了LLM的潜力。LLM 不仅仅是一个文本生成工具,它可以成为一个强大的通用问题解决器。无论是写作、故事、论文还是程序等,LLM 都能应对自如。它展现了巨大的潜力,在解决现实世界难题方面具备强大的能力。

BabyAGI 的创造者 Yohei Nakajima 曾说:“The future of autonomous agents looks like everybody becoming a manager.” 这句话很好地概括了我们对 Agents 的展望。

Agent的HelloWorld工作流实例

假设有一个协助研究的 Agent,我们希望获取关于 Twitter 的最新新闻摘要:

我们告诉 Agent “你的目标是找出关于Twitter的最新消息,然后给我发一份摘要”。

Agent查看目标并使用像OpenAI的GPT-4这样的AI进行阅读理解,它提出了第一个任务:“在谷歌上搜索与Twitter相关的新闻。”

然后,Agent 在谷歌上搜索 Twitter 新闻,找到热门文章,并返回链接列表。第一个任务已完成。

现在,Agent 回顾主要目标(获取关于Twitter的最新新闻,并发送摘要)以及它刚刚完成的内容(获得一系列关于Twitter的新闻链接),并决定其下一个任务需要是什么。

它提出了两个新任务。1)写新闻摘要。2)阅读通过谷歌找到的新闻链接的内容。

在继续之前,智能助理会稍作停顿,以确保正确安排这些任务。它反思是否应该先写摘要。然而,它决定首要任务是阅读通过谷歌找到的新闻链接的内容。

Agent 阅读文章内容,然后再次查看待办事项列表。它考虑添加一个新任务来总结所阅读的内容,但是发现这个任务已经在待办事项列表中,因此不会重复添加它。

Agent 检查待办事项列表,只剩下一项任务:撰写所阅读内容的摘要。于是,它执行了这个任务,按照您的要求向您发送了摘要。
 

 AutoGPT

AutoGPT 是一个由Toran Richards创建的流行开源项目,github有接近15万星🌟。它利用GPT4作为大脑,结合langchain的链接思想,连接各种工具和互联网资源,来完成人类给予的任务。

您只需要设定一个目标,AutoGPT就会自主规划并逐步执行任务。如果遇到问题,它会自主拆分任务并逐步解决。

AutoGPT 所做的事情就是把电脑的控制权、向量空间的云存储、各种工具的API交给了AI。借此,它可以分析市场并提出交易策略、客户服务、营销、财务或其他需要持续更新的任务。

这就是为什么 Karpathy 最近说“AutoGPT 是提示工程的下一个前沿”

AutoGPT 相当于给基于 GPT 的模型赋予了内存和主体。您现在可以将任务交给 AI 代理,让它自主制定计划、执行计划、浏览网页并使用新数据修改策略,直到任务完成。

AutoGPT由以下三个组成部分构成:

架构:它通过 API 调用 GPT-4 和 GPT-3.5。

自主迭代:AutoGPT通过自我评估改进其输出,利用以前的行动和提示历史以获得更准确的结果。

内存管理:与 @pinecone 的集成让 AutoGPT 能够长期内存存储,支持上下文保存和改进决策。

此外,AutoGPT还具备多功能性,例如文件操作、网页浏览和数据检索等功能,使其应用范围更广。

快速体验AutoGPT:以Cognosys为例

让我们以Cognosys为例,看看如何使用他们的平台来应用AgentGPT来总结最新新闻。

Cognosys 一款类AutoGPT 的在线工具;不需要绑定OpenAI 的API Key

首先,访问Cognosys网站。

输入Agent的名称和您想要达到的目标,让AgentGPT知道您的需求。

选择模式为Browsing,让AgentGPT拥有联网能力

点击提交,AgentGPT会利用其强大的自然语言处理能力来搜索最新的新闻,并呈现出相关的摘要。

您可以阅读并评估生成的新闻摘要,如果需要,还可以对其进行修改或完善,让摘要更贴合您的需求。

除此之外

AI平台Hugging Face提供了托管版本的AutoGPT。您只需要提供OpenAI API密钥,为AI指定角色和一些目标即可

对于Replit用户,您还可以fork此repl并为其提供您的OpenAI API密钥来体验

godmode也允许您输入OpenAI API密钥后直接体验AutoGPT

恭喜你掌握了第一个 Agent!

AgentGPT

 AgentGPT 的自我介绍:

AgentGPT: Create and run an autonomous agent (AutoGPT) from a website, no login required.

AgentGPT 是一个基于 Langchain 和 OpenAI 基础构建的 AI Agent。它是一个 AI 代理平台,使您能够在浏览器或个人计算机中创建、配置和部署自主 AI 代理。

AgentGPT 允许您配置和部署自治 AI 代理。命名你自己的自定义 AI,让它开始实现任何可以想象的目标。它将尝试通过思考要做的任务、执行它们并从结果中学习来达到目标。

AgentGPT 和 AutoGPT 之间的区别

AutoGPT 是一款功能强大的 AI 工具。但在开始使用之前,您需要设置 Git、安装 Python、下载 Docker 桌面程序并获取 OpenAI API 密钥。

AgentGPT 实际上是基于 AutoGPT 架构进行了改进,为您增加了一个网页界面,摆脱了繁琐的搭建和安装过程。从本质上来说,它就是一个 AutoGPT,您无需自行搭建,也不必担心繁杂的构建步骤,只需要登录网站就可以使用。

简单使用 

前置准备:在使用AgentGPT之前,您需要获取OpenAI API密钥。访问 OpenAI 网站 https://www.openai.com/。

AgentGPT 注册步骤如下:

访问 AgentGPT 平台:https://agentgpt.reworkd.ai/

在 reworkd.ai 上创建一个帐户,并通过提供您的名称和目标来部署您的代理

在我们的例子中,我们要求 AgentGPT 开发一个能够人脸识别的 Web 应用程序。这里我部分截取了中间的运行效果,AgentGPT成功帮我生成了一个人脸识别的 Web 应用,期间无需写任何代码

自己部署

感兴趣的小伙伴也可以尝试自己在本地部署 Agents!

Vercel一键部署AgentGPT

Vercel目前已经支持自主一键部署AgentGPT

HuggingGPT

HuggingGPT是一个多模型调用的 Agent 框架,利用 ChatGPT 作为任务规划器,根据每个模型的描述来选择 HuggingFace 平台上可用的模型,最后根据模型的执行结果生成总结性的响应。

这个项目目前已在 Github 上开源,并且有一个非常酷的名字叫做 JARVIS(钢铁侠的助手)。这项研究主要涉及到两个主体,一个是众所周知的 ChatGPT,另一个是 AI 社区中的 Hugging Face。

在HuggingGPT中,ChatGPT充当了”操作大脑”的角色,能够自动解析用户提出的需求,并在Hugging Face的AI模型库中进行自动模型选择、执行和报告,为我们开发更复杂的人工智能程序提供了极大的便利。

MetaGPT

MetaGPT引入了一个将人工工作流程与多智能体协作无缝集成的框架。通过将标准化操作(SOP) 程序编码为提示,MetaGPT确保解决问题时采用结构化方法,从而减少出错的可能性。

当前 Agent 的解决方案存在一个问题:尽管这些语言模型驱动的 Agent 在简单的对话任务上取得了显著进展,但在面对复杂任务时,LLM 会陷入困境,仿佛看到了并不存在的事物(幻觉)。当将这些 Agent 串联起来时,就会引发混乱的连锁反应。

现在 MetaGPT 引入了标准化操作程序。这些操作程序就像作弊码一样,用于顺利协调工作。它们告诉代理们发生了什么事,以有条不紊的方式指导他们。

借助这些操作程序,代理几乎可以像领域专家一样熟悉他们的工作,并验证输出以避免错误。就像高科技流水线一样,每个代理都扮演着独特的角色,共同理解复杂的团队合作。

为什么 MetaGPT 很重要

MetaGPT 提供了一个全新的视角。这就是它掀起波澜的原因:

稳定的解决方案:借助SOP,与其他 Agents 相比,MetaGPT 已被证明可以生成更一致和正确的解决方案。

多样化的角色分配:为LLM分配不同角色的能力确保了解决问题的全面性。

MetaGPT 软件开发过程

需求分析:收到需求后,该过程开始。这一阶段致力于明确软件所需的功能和要求。

扮演产品经理:产品经理以需求和可行性分析为基础,开启整个流程。他们负责理解需求,并为项目制定明确的方向。

扮演架构师:一旦需求明确,架构师将为项目创建技术设计方案。他们负责构建系统接口设计,确保技术实现符合需求。在MetaGPT中,架构 Agent 可以自动生成系统界面设计,如内容推荐引擎的开发。

扮演项目经理:项目经理使用序列流程图来满足每个需求。他们确保项目按计划前行,每个阶段都得到适时执行。

扮演工程师:工程师负责实际的代码开发。他们使用设计和流程图,将其转化为功能完备的代码。

扮演质量保证(QA)工程师:在开发阶段结束后,QA工程师进行全面的测试。他们确保软件符合所需标准,不存在任何错误或问题。

实例

举个例子,当你输入

python startup.py “Design a RecSys like Toutiao”,

MetaGPT会为你提供多个输出,其中之一是有关数据和API设计的指导。

生成一个包含分析和设计示例的成本大约为0.2美元(使用GPT-4 API),而完整项目的成本约为2.0美元。通过这种方式,MetaGPT提供了低廉的解决方案,让你能够快速获取所需的信息和指导。

快速体验

目前MetaGPT暂无在线体验版本。这里我会列出docker的安装方法,最大程度减少大家安装面对的环境难度:

# Step 1: Download metagpt official image and prepare config.yaml docker pull metagpt/metagpt:v0.3.1 mkdir -p /opt/metagpt/{config,workspace} docker run --rm metagpt/metagpt:v0.3.1 cat /app/metagpt/config/config.yaml > /opt/metagpt/config/key.yaml vim /opt/metagpt/config/key.yaml # Change the config

# Step 2: Run metagpt demo with container docker run --rm \ --privileged \ -v /opt/metagpt/config/key.yaml:/app/metagpt/config/key.yaml \ -v /opt/metagpt/workspace:/app/metagpt/workspace \ metagpt/metagpt:v0.3.1 \ python startup.py "Write a cli snake game" # You can also start a container and execute commands in it docker run --name metagpt -d \ --privileged \ -v /opt/metagpt/config/key.yaml:/app/metagpt/config/key.yaml \ -v /opt/metagpt/workspace:/app/metagpt/workspace \ metagpt/metagpt:v0.3.1 docker exec -it metagpt /bin/bash $ python startup.py "Write a cli snake game"

将"Write a cli snake game"更换成你喜欢的命令试试吧!

Autogen

由微软开发的 Autogen 是一个新的 Agents 项目,刚一上线就登上GitHub热榜,狂揽11k星

项目地址:https://github.com/microsoft/autogen

Autogen 允许你根据需要创建任意数量的Agents,并让它们协同工作以执行任务。它的独特之处在于允许 Agent相互通信并解决任务。例如你可以设置三个角色,产品经理、程序员和设计师,让他们之间讨论如何实现一个产品,并给出 Demo 代码。

不需要写复杂的prompt设定Agents,Agent 自己聊着天就把事给办了🤯

诞生了哪些好玩的AutoGen应用?

几秒钟生成游戏

模拟世界:允许用户阅读时自己参与与主角交互

可视化数据分析

除此之外,官方还放出了6个应用案例,包括解决数学问题、多智能体编码、在线决策制定、基于检索增强聊天、动态群聊以及对话式国际象棋。

充分展示了AutoGen的定制性
 
 AI AIgents时代- Autogen-CSDN博客

OpenAgents

OpenAgents,一个声称在Interface和Environment上全方面超越AutoGPT,OpenInterPreter等框架

接下来我们逐步拆解OpenAgents的独特之处!OpenAgents开发的LLM-powered代理XLang集成了三个功能强大的代理:DataAgent、PluginAgent、webAgent

技术细节 OpenAgents基于LangChain构建了XLang Agents,使用ReAct范式进行思考、行动和观察来完成任务。OpenAgents填补了LangChain的一些空缺,包括提供全面的工具集、实现Web用户界面和后端服务器、创建DataModel类以便信息呈现,以及改进提示。Web用户界面允许用户通过自然语言反馈与Agent交互,而记忆组件则将多轮用户反馈作为历史上下文的一部分传递给Agent。

RL Agent:

ReAct Agent:

XLang Agents:
 

AI AIgents时代-(六.)OpenAgents-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/205635.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

csapp深入理解计算机系统 bomb lab(1)phase_4

使用 disas phase_4 查看phase_4的汇编代码 按照惯例,查看一下0x4025cf内存单元存放的字符串的值是什么 所以phase_4的输入应该是两个整数。 下面使用先猜想后验证的方法尝试找出两个整数的值,猜想两个整数为1,2,在ans.txt写入1,2&#xff0…

Linux安装jdk8【十分丝滑】

1.上传安装包到Linux💕💕💕 2.使用命令解压缩💕💕💕 tar -zxvf 压缩文件名 3.重命名💕💕💕 mv 原文件名 新的文件名 4.配置环境变量🤩🤩&…

史上最全前端知识点+高频面试题合集,十二大专题,命中率高达95%

前言: 下面分享一些关于阿里,美团,深信服等公司的面经,供大家参考一下。大家也可以去收集一些其他的面试题,可以通过面试题来看看自己有哪里不足。也可以了解自己想去的公司会问什么问题,进行有针对的复习。…

C# 调用 c++ dll

C# 调用 c dll 首先 c 库 dll 要定义 代码中定义 CPP_EXPORTS #ifdef LASERSDK_EXPORTS #define CPP_EXPORTS __declspec(dllexport) #else #define CPP_EXPORTS __declspec(dllimport) #endif编译器定义 LASERSDK_EXPORTS 普通函数 c extern "C" CPP_EXPORTS …

数据挖掘 感知机

要使用感知机,我们首先要引入头文件,以下是感知机用的到头文件: import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import Perceptron from sklearn.model_selection import train_test_…

Ubuntu Linux玩童年小霸王插卡游戏

1.下载安装模拟器 在Windows平台模拟器非常多,而且效果也很优秀,Linux平台的用户常常很羡慕,却因为系统的缘故,无法使用这样的模拟器,但是随着时代的发展,Linux平台也出现了许多优秀的模拟器,现…

深度学习框架:Pytorch与Keras的区别与使用方法

☁️主页 Nowl 🔥专栏《机器学习实战》 《机器学习》 📑君子坐而论道,少年起而行之 文章目录 Pytorch与Keras介绍 Pytorch 模型定义 模型编译 模型训练 输入格式 完整代码 Keras 模型定义 模型编译 模型训练 输入格式 完整代…

4G5G防爆执法记录仪、防爆智能安全帽赋能智慧燃气,可视化巡检巡线,安全生产管控

随着燃气使用的普及,燃气安全问题日益突出。传统应急安全问题处理方式暴露出以下问题: 应急预案不完善:目前一些燃气企业的应急预案存在实用性不高、流程不清晰等问题,导致在紧急情况下难以迅速启动和有效执行。 部门协同不流畅…

Less的函数的介绍

文章目录 前言描述style.less输出后言 前言 hello world欢迎来到前端的新世界 😜当前文章系列专栏:Sass和Less 🐱‍👓博主在前端领域还有很多知识和技术需要掌握,正在不断努力填补技术短板。(如果出现错误,…

数据仓库数据管理模型

数据仓库分为贴源层、数据仓库层、数据服务层,有人叫做数仓数据模型,或者叫"数据管理模型”。 我们为什么要进行数据分层管理,下图的优点介绍已经说得比较明确,再补充几点: 保障数据一致性:上层的数…

C#图像处理OpenCV开发指南(CVStar,03)——基于.NET 6的图像处理桌面程序开发实践第一步

1 Visual Studio 2022 开发基于.NET 6的OpenCV桌面程序 1.1 为什么选择.NET 6开发桌面应用? 选择 .NET 6(最早称为 .NET Core)而非 Frameworks.NET 的理由是:(1)跨平台;已经支持Windows,Linux…

Redis 事件轮询

1 Redis 为什么快 数据存在内存中, 直接操作内存中的数据单线程处理业务请求避免了多线的上下文切换, 锁竞争等弊端使用 IO 多路复用支撑更高的网络请求使用事件驱动模型, 通过事件通知模式, 减少不必要的等待… 这些都是 Redis 快的原因。 但是这些到了代码层面是如何实现的呢…

【UGUI】中Content Size Fitter)组件-使 UI 元素适应其内容的大小

官方文档:使 UI 元素适应其内容的大小 - Unity 手册 必备组件:Content Size Fitter 通常,在使用矩形变换定位 UI 元素时,应手动指定其位置和大小(可选择性地包括使用父矩形变换进行拉伸的行为)。 但是&a…

PHP项目用docker一键部署

公司新项目依赖较多,扩展版本参差不一,搭建环境复杂缓慢,所以搭建了一键部署的功能。 docker-compose build 构建docker docker-compose up 更新docker docker-compose up -d 后台运行docker docker exec -it docker-php-1 /bin/bas…

idea方法注释模版设置

方法上面的注释模版: Template text: ** Description $desc$ $param$ $return$* Aauthor yimeng* date $DATE$ $TIME$ **/param: groovyScript("def result ;def params \"${_1}\".replaceAll([\\\\[|\\\\]|\\\\s], ).split(,).toLis…

.net core 连接数据库,通过数据库生成Modell

1、安装EF Core Power Tools:打开Vs开发工具→扩展→管理扩展 2、(切记执行这步之前确保自己的代码不存在编写或者编译错误!)安装完成后在你需要创建数据库实体的项目文件夹上面单击右键,找到EF Core 工具(必须安装扩展之和才会有…

redis的集群,主从复制,哨兵

redis的高可用 在Redis中,实现高可用的技术主要包括持久化、主从复制、哨兵和集群,下面分别说明它们的作用,以及解决了什么样的问题。 持久化: 持久化是最简单的高可用方法(有时甚至不被归为高可用的手段)…

手机笔记工具怎么加密?

选择用手机笔记工具记事,大家可以记录很多学习笔记、读书笔记、私密日记等,手机作为随身携带的设备,记录相关的笔记比较快捷且方便,当手机笔记中记录的内容比较私密时,大家担心手机笔记会被别人误看,这时候…

面试篇Flink

一:为什么学习flink? 相比较spark,flink对于实时这块,使用过流的方式进行实现。 spark是通过批流的方式实现,通过减少批的时间间隔来实现流的功能。 二:什么是flink? flink是一个针对于实时进…

C++ 通过CryptoPP计算Hash值

Crypto (CryptoPP) 是一个用于密码学和加密的 C 库。它是一个开源项目,提供了大量的密码学算法和功能,包括对称加密、非对称加密、哈希函数、消息认证码 (MAC)、数字签名等。Crypto 的目标是提供高性能和可靠的密码学工具,以满足软件开发中对…