自定义类型-结构体,联合体和枚举-C语言

引言

能看到结构体,说明C语言想必学习的时间也不少了,在之前肯定也学习过基本数据类型,包括整型int,浮点型float等等。可是在日常生活中,想要描述一个事物并没有那么简单。比如,你要描述一本书,关于本书需要描述出书名,定价,以及作者等信息,单靠整数,或者是字符数组都没办法一次性描述清楚,这里就引申出了一种新的可自定义类型——结构体。在一个结构体中,可以定义多种相同或者不同的数据类型,有了结构体,我们便可以根据需要创建自己的数据类型,来描述一些复杂的事物了。同时,本篇还要介绍以下另外两种自定义类型,联合体和枚举。

结构体struct

结构体的创建以及应用

下面写出结构体基本定义

struct tag  //tag为类型名称
{member-list;//这里可以定义多行数据类型
}variable-list; //变量创建,可以在此创建结构体变量

 在描述完上方定义后可能你会有些疑惑,但别急,接下来给大家举个例子,现在我们定义一个关于学生的结构体

struct Stu  //这是创建了一个结构体类型
{char name[30];int age;char number[30];
};
struct Stu student={"zhangsan",19,"2003020102"};
//这时在创建结构体类型后运用其创建结构体变量,同时对变量初始化
struct Stu   //这时创建类型的同时创建了三个结构体变量
{char name[30];int age;char number[30];
}student1, student2, student3;

像上方这样, 我们的结构体类型以及变量就创建好了,在创建的同时,还可以进行初始化。下面代码将应用这些变量。以(结构体变量.成员)的形式来访问结构体变量中的元素。

#include <stdio.h>
struct Stu
{char name[30];int age;char number[30];
};
int main()
{struct Stu student = { "zhangsan",19,"2001040302" };printf("%s\n%d\n%s\n", student.name, student.age, student.number);return 0;
}

 

结构体指针形式访问

运用一个指针指向结构体,通过->符号可以直接访问元素,下面是使用样例。

#include <stdio.h>
struct Stu
{char name[30];int age;char number[30];
};
int main()
{struct Stu student = { "zhangsan",19,"2001040302" };//printf("%s\n%d\n%s\n", student.name, student.age, student.number);struct Stu* p;p = &student;printf("%s\n%d\n%s\n", p->name, p->age, p->number);return 0;
}

 

结果依然相同 

结构体传参

现在看下面这样一组代码

#include<stdio.h>
struct S
{int data[1000];int num;
};
void print1(struct S t)
{printf("%d %d\n", t.data[1], t.num);
}
void print2(struct S* ps)
{printf("%d %d\n", ps->data[1], ps->num);
}
int main()
{struct S s = { {1,2,3,4,5},100 };print1(s); //传递结构体print2(&s);//传递结构体地址return 0;
}

这两种传递的方式都是正确的,但是直接传递结构体的方式却有很大的弊端,就是直接传递传递结构体需要重新开辟一片新的空间,当结构体变量比较大的时候,是极其消耗栈的内存空间的,因此会降低计算机运行效率。但是传递结构体的过程中有时并不想改变其中元素怎么办呢?我们可以给结构体加上const从而保护其中元素,使其在函数中无法通过指针改变结构体中的变量。

#include<stdio.h>//此代码很好的在运行函数时保护了结构体变量s
struct S
{int data[1000];int num;
};
void print2(const struct S* ps)
{printf("%d %d\n", ps->data[1], ps->num);
}
int main()
{struct S s = { {1,2,3,4,5},100 };print2(&s);//传递结构体地址return 0;
}

结构体特殊声明

 在结构体声明中,有一些特殊的声明,它们没有类型名,同时没有对应类型,也被称作匿名结构体。这种结构体的变量只能在声明时创建。

#include<stdio.h>
struct
{int a;char b;
}x;
struct
{int a;char b;
}*p;
int main()
{p = &x;return 0;
}

当你写出上方这样的代码时,编译器会报错,因为匿名结构体没有对应的类型,就算元素相同,编译器也会将它们当成不同类型。

给结构体类型起名typedef

#include<stdio.h>
typedef struct
{int a;char b;
}S;//此时类型名为S
int main()
{S data = { 20,'x' };//此时,可以用类型名S来这样初始化结构体变量return 0;
}

结构体的自引用

奇思妙想一下,能否将结构体的元素定义成定义的结构体呢? 像以下这种方式

struct Node
{int data;struct Node next;
};

其中data表示的是存储在节点Node中的元素,而next放置的是下一个结构体元素,其中包含的元素同样是一个data和一个Node。这样的想法很美好,但如果将结构体自己定义成自己的元素,那么一层一层套下去,最后导致的结果就是使Node的大小无法被定义,故此方式不可行。 

不过我们可以采取另一种方式,将next定义成一个结构体指针,指向下一个结构体,像下面这样

struct Node
{int data;struct Node* next;
};

data是节点存储的数据,而next指向下一个结构体的地址,就像一个链条一样将结构体串联了起来,这就是数据结构中链表的内容了,不是本篇内容的重点,不做深究。 

结构体内存对齐

在学习结构体中,不知道你是否考虑过这样的问题,结构体是怎么分配内存的,接下来我们将通过一个代码引入这个问题

#include<stdio.h>
struct s1
{char c1;char c2;int i;
};
struct s2
{char c1;int i;char c2;
};
int main()
{printf("%zd %zd\n", sizeof(struct s1), sizeof(struct s2));return 0;
}

试着猜猜上面代码会打印什么结果呢?

 

看看有没有出乎你的意料?

是的, 由于平台存在内存对齐,故按我们假象所计算的结果与真实编译器实现不同。

下面讲讲对齐规则

对齐规则:

1.结构体的第一个成员对齐到和结构体变量起始位置偏移量为0的地址处;

2.其他成员变量要对齐到某个数字(对齐数,这里的对齐是成员变量元素所占地址大小,比如char的对齐数是1,而int的对齐数为4)的整数倍的地址处。

注意:对齐数=min{编译器默认对齐数,该成员变量大小},即两者的较小值。VS2022的默认对齐数是8,而Linux中gcc没有默认对齐数,即对齐数是成员变量自身大小。

3.结构体总大小为最大对齐数(结构体中每个成员变量都有一个对齐数,所有对齐数中最大的)整数倍。

4. 如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。

根据上述的规则,我们可以再来看看代码,跟具规则来计算开辟的空间

先来分析第一个,首先char c1,由对齐规则1,可知开辟到0地址处,然后到了char c2,char对齐到1的整数倍,所以开辟在1地址处,当开始开辟int类型i的内存时,由于i的对齐数是4,所以要对到4的整数倍上,所以最后在4的位置开辟空间,而地址2,3的内存就被浪费了,所以是空。开辟结束时所占内存大小为8,刚好是最大对齐数4的整数倍,所以最终结构体s1所占内存为8。结果见下图左方。

再来分析第二个结构体,首先还是开辟char c1在0处,然后开辟int类型i的空间,因为要与int所占内存大小4,对齐数为4,所以在4处开辟空间,1,2,3被浪费。再开辟c2,其对齐数为1,所以在8处开辟空间,在开辟完之后所占内存为9,不是最大对齐数的整数倍,所以还要再多开辟三个空间,9,10,11被浪费。最后开辟空间数为12。见下图右方。

 

到了这里,大家可能又有了一些疑问,为社么会存在内存对齐?下面是一些参考资料给出的解答

为什么存在内存对齐?

1.平台原因(移植原因):

不是所有的硬件平台都能访问任意地址上的任意数据;某些硬件平台只能从某些特定地址处取某些特定的数据,否则抛出硬件异常

2.性能原因:

数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要做两次内存访问;而对齐的内存访问仅需一次。假设一个处理器总是从内存中取8个字节,则地址必须是8的倍数。如果我们能保证将所有的double类型数据的地址都对齐为8的倍数,那么就可以用一个内存操作来读写值了。否则,我们可能需要执行两次内存访问,因为对象可能被分别放在8个字节内存块中。

总的来说:结构体的内存对齐是拿空间换取时间的做法

修改默认对齐数

#include<stdio.h>
#pragma pack(1)//修改默认对齐数为1
struct S
{char c1;char c2;int i;
};//此时sizeof(struct S)的值为6
#pragma pack()//取消设置的对齐数,还原为默认对齐数

结构体实现位段 

C语言中,位段是一种数据结构,允许你为结构体中的成员分配一个特定数量的位(bit),而不是分配完整的字节。这在需要精确控制内存分布或减少内存占用时很有用,比如硬件访问和网络协议设计。对于字段的声明与结构体类似,但也有不同:位段通过在结构体定义中为成员后添加一个冒号和位数(比特位)来创建的,例如:

struct A
{int _a : 2;int _b : 5;int _c : 10;int _d : 30;
};

位段的内存分配

1.位段的成员可以是int,unsigned int,signed int或者是char类型

2.空间按照四个字节(int)/一个字节(char)的方式来开辟的

3.位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段 

位段的成员是顺序放置的,但当当前存储单元没有足够的空间容纳下一个位段时,编译器可能(会不会跳转取决于编译器)会跳转到下一个存储单元。这可能导致在存储单元有未使用的位。

编译器可能在位段的末尾添加填充,现在让我们假设一下VS2022的字段分配方式

现在有以下代码

#include<stdio.h>
struct S
{char a : 3;char b : 4;char c : 5;char d : 4;
};
int main()
{struct S s = { 0 };s.a = 10;s.b = 12;s.c = 3;s.d = 4;
}

位段中的成员在内存中从左向右,还是从右向左尚未定义。

假设为从右向左分配,char中首先为8个比特位,首先a占三个比特位,我们赋a的值为10,二进制为1010,经三个比特位截断得010,也就是二

 

当赋值b的时候,b占4个比特位,赋值b为12,二进制1100,刚好取四位1100 

下一个c占5个比特位,由于无法放下,跳转下一个位段放置的值为3,二进制00011

 

最后d占4个比特位,在第二个位段放入会超范围条赋值跳到下一个位段,4二进制0100放入,最终结果为下图

我们断点调试一下,验证一下结果,先取出结构体s的地址,开始内存中存的都是0,当走过s.a赋值语句时,内存中的值发生了变化

当运行过s.b后 

 

运行s.c后 

 

运行完s.d后 

 

 经过调试验证,得到最终结果,假设正确(注意:在调试时显示的值都是以四个比特位的形式显示的,故显示的值不一定等于存入的值)

十六进制0x 62 03 04的二进制为:01110010 000000110 00000100

位段的跨平台问题

位段的内存布局:不同的编译器可能会以不同的顺序排列位段。有些编译器可能会按照声明的顺序排列位段,而其他编译器可能会重新排序以优化空间或访问率

位段中的存储单元:位段通常储存在整型存储单元中,但不同的编译器可能会选择不同的类型作为存储单元

C中位段内存从左向右和从右向左是没有确切定义的,端序影响在大端和小端中,位段的物理存储顺序可能不同

注:由于bit位没有地址,所以位段的几个成员公用一个字节,这样有些成员的起始位置并不是某些字节的起始位置,那么这些位置是没有地址的,所以无法通过取地址的方式为其赋值

struct S
{char a : 3;char b : 4;char c : 5;char d : 4;
};
int main()
{struct S s = { 0 };//scanf("%d",&s.a);<---wrong,结构体位段不可取地址//以下赋值方式均正确s.a = 10;s.b = 12;s.c = 3;s.d = 4;
}

联合体union

什么是联合体

与结构体很相似,联合体也是由一个或多个成员构成,这些成员可以是不同的类型,来看看下面这段代码会打印什么

#include<stdio.h>
union u
{char c;int num;
};
int main()
{union u uu;printf("%zd\n", sizeof(uu));printf("%p\n", &uu);printf("%p\n", &(uu.c));printf("%p\n", &(uu.num));return 0;
}

 

可以发现,uu占用的空间只有4个字节,而且后面三个地址是相同的,这意味着什么呢?uu.c和uu.num占用的空间在相同的位置,共用一块空间,当一个元素被赋值时,另一个元素的值会被覆盖。因为联合体的这种特性,我们还叫他共用体。 

联合体与共用体比较

struct s //结构体
{char c;int i;
};
union u  //联合体
{char c;int i;
};

上图中粉色的是被浪费的空间 

联合体占用内存

关于占用内存这里要严谨一点,很多教课书和课程里都说联合体的大小是最大成员的大小,实际上这样说是错的,在联合体中也存在和结构体一样的对齐数,当最大元素所需的的空间不是对齐数的倍数时,会自动将其矫正为对齐数倍数,见下图,附上代码

#include<stdio.h>
union u
{char c[5];int i;
};
int main()
{union u uu;printf("%zd\n", sizeof(uu));return 0;
}

联合体的应用

也许你会问计算机内存这么大,联合体节省那一点空间真的有必要吗,但是联合体并不主要用于计算机中,在内存极其宝贵的硬件中,节省这样一些空间是很有必要的。

大小端判断(共用体版)

在上一篇博客讲到计算机内存时,曾讲过一段判断大小端的代码,链接放这里,可以去看,里面还有讲解大小端是什么。数据在内存中的存储-CSDN博客

今天我们要用联合体编写一段代码来判断大小端,见下代码

#include<stdio.h>
//n和s共用一块空间
//当给n赋值后用s可以随意取每个字节上的元素
int check_sys()
{union{char c;int i;}u;u.i = 1;return u.c;
}
int main()
{if (check_sys()) {printf("小端\n");}elseprintf("大端\n");return 0;
}

这样的代码是不是让人眼前一亮,当一个人对代码有很强的掌控力时,打代码便成了一种艺术。

枚举enum

定义枚举

通过关键字enum定义。eg:

enum Sex
{//这里列举枚举类型 性别 的可能取值MALE,  //男FEMALE, //女SECRET  //保密
};

默认情况下,枚举的第一个成员的值是0,后续成员值依次递增,但同时我们可以给其指定值:

enum Sex
{//这里列举枚举类型 性别 的可能取值MALE = 3,  //男FEMALE = 5, //女SECRET = 9  //保密
};

枚举和#define定义常量很像,枚举变量里定义的值是符号常量。

故可以这样使用

#include<stdio.h>
enum Sex
{//这里列举枚举类型 性别 的可能取值MALE,  //男FEMALE, //女SECRET  //保密
};
int main()
{enum Sex zhangsan = MALE;if (zhangsan == MALE) {printf("张三是男的\n");}else printf("张三是女的\n");return 0;
}

 

枚举的优点

1.代码可读性:枚举常量的使用可以提高代码的可读性和可维护性

2.类型安全:枚举提供了一个类型安全的方法来表示一组整数值

3.调试方便:调试时,枚举变量可同时显示其字符常量和其值,便于观察

结语

 到了这里,结构体,联合体和枚举就介绍完了,一篇博客费时费力,画图也是一大难点,看在我这么辛辛苦苦写博客的份上,给个小小的赞不过分吧。如果感觉这篇博客对你有帮助的话,还请给个小小的赞再走啊!比心---♥

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/208242.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux常见指令大全及周边知识:让你的命令行变得更加强大

文章目录 目录 文章目录 前言 一&#xff0c;Linux操作系统是啥&#xff1f; 二&#xff0c;Linux操作系统具有以下特点 三&#xff0c;指令的学习 1&#xff0c;指令是什么&#xff1f; 2&#xff0c;ls 指令及其常用的衍生指令&#xff1a; 周边知识&#xff1a; ls…

解决Wireshark分析RTMP抓包时Unknown问题

使用Wireshark抓包时&#xff0c;经常出现很多Unknown包&#xff0c;但实际上的字节流实际是正常的。 其实&#xff0c;RTMPT设置里有一个最大包大小的设置&#xff0c;默认是32768&#xff0c;而且默认RTMPT协议配置了从多个TCP流中重组RTMPT的功能(应当是考虑基于HTTP的传输…

RPC和HTTP的区别

目录 1、RPC是什么 1.1 概念 1.2 RPC的组成部分 1.3 常见的 RPC 技术和框架 1.4 RPC的工作流程 2、HTTP是什么 2.1 概念 2.2 HTTP的消息格式 2.3 HTTP响应状态码有哪些 3、⭐RPC和HTTP的区别 小结 1、RPC是什么 1.1 概念 RPC&#xff08;Remote Procedure Call&am…

MySQL字符函数

在数据库中&#xff0c;字符函数是一组用于处理字符串的函数。这些函数可以帮助我们执行各种操作&#xff0c;如连接、比较、替换等。本文将介绍一些常用的MySQL字符函数&#xff0c;并演示如何在查询中使用它们。 1.concat() 函数 CONCAT() 函数用于连接两个或多个字符串。它…

Scrapy框架内置管道之图片视频和文件(一篇文章齐全)

1、Scrapy框架初识&#xff08;点击前往查阅&#xff09; 2、Scrapy框架持久化存储&#xff08;点击前往查阅&#xff09; 3、Scrapy框架内置管道 4、Scrapy框架中间件&#xff08;点击前往查阅&#xff09; 5、Scrapy框架全站、分布式、增量式爬虫 Scrapy 是一个开源的、…

前端入门(四)Ajax、Promise异步、Axios通信、vue-router路由、组件库

文章目录 AjaxAjax特点 Promise 异步编程&#xff08;缺&#xff09;Promise基本使用状态 - PromiseState结果 - PromiseResult AxiosVue中使用AxiosAxios请求方式getpostput和patchdelete并发请求 Vue路由 - vue-router单页面Web应用&#xff08;single page web application&…

一起学docker系列之十四Dockerfile微服务实践

目录 1 前言2 创建微服务模块2.1 **创建项目模块**2.2 **编写业务代码** 3 编写 Dockerfile4 构建 Docker 镜像5 运行 Docker 容器6 测试微服务7 总结8 参考地址 1 前言 微服务架构已经成为现代软件开发中的一种重要方式。而 Docker 提供了一种轻量级、便携式的容器化解决方案…

java设计模式学习之【原型模式】

文章目录 引言原型模式简介定义与用途实现方式UML 使用场景优势与劣势原型模式在spring中的应用员工记录示例代码地址 引言 原型模式是一种创建型设计模式&#xff0c;它允许对象能够复制自身&#xff0c;以此来创建一个新的对象。这种模式在需要重复地创建相似对象时非常有用…

蓝桥第一期模拟总结

文章目录 1.动态的 Tab 栏2.地球漫游3.迷惑的this4.燃烧卡路里5.魔法失灵了6.年龄统计 所有题目链接 1.动态的 Tab 栏 本题要实现一个tab栏固定效果&#xff0c;看见题目就想到css中的 position: fixed; 尝试了很久都没能实现效果&#xff0c;后来又想到了粘性定位 position: …

【.NET全栈】.net的微软API接口与.NET框架源码

文章目录 0 前言1 微软官方.net接口学习2 .NET框架源码总结 0 前言 如果浏览器打不开链接&#xff0c;换一个浏览器打开。 我是 打不开微软的链接&#xff0c;使用&#xff1a; 可以打开&#xff01;&#xff01;&#xff01; 1 微软官方.net接口学习 https://docs.microsoft…

【UE】UEC++获取屏幕颜色GetPixelFromCursorPosition()

目录 【UE】UE C 获取屏幕颜色GetPixelFromCursorPosition() 一、函数声明与定义 二、函数的调用 三、运行结果 【UE】UE C 获取屏幕颜色GetPixelFromCursorPosition() 一、函数声明与定义 创建一个蓝图方法库方法 GetPixelFromCursorPosition()&#xff0c;并给他指定UF…

面试就是这么简单,offer拿到手软(一)—— 常见非技术问题回答思路

面试系列&#xff1a; 面试就是这么简单&#xff0c;offer拿到手软&#xff08;一&#xff09;—— 常见非技术问题回答思路 面试就是这么简单&#xff0c;offer拿到手软&#xff08;二&#xff09;—— 常见65道非技术面试问题 文章目录 一、前言二、常见面试问题回答思路问…

Linux下的文件IO之系统IO

1. 知识点 读入写出&#xff0c;切记以我们程序为中心向文件或者别的什么东西读入写出&#xff08;输入流输出流&#xff09; 人话就是 文件向我们程序就是读入 程序向文件或者别的什么就是写出 2. open打开文件 open.c /****************************************************…

05_MySQL主从复制架构

任务背景 ##一、真实案例 某同学刚入职公司&#xff0c;在熟悉公司业务环境的时候&#xff0c;发现他们的数据库架构是一主两从&#xff0c;但是两台从数据库和主库不同步。询问得知&#xff0c;已经好几个月不同步了&#xff0c;但是每天会全库备份主服务器上的数据到从服务…

5G承载网和大客户承载的演进

文章目录 移动4/5G承载网联通和电信4/5G承载网M-OTN&#xff08;Metro-optimized OTN&#xff09;&#xff0c;城域型光传送网PeOTN&#xff08;packet enhanced optical transport network&#xff09;&#xff0c;分组增强型OTN板卡增强型PeOTN集中交叉型PeOTN VC-OTN&#x…

2023-12-01 LeetCode每日一题(找出叠涂元素)

2023-12-01每日一题 一、题目编号 2661. 找出叠涂元素二、题目链接 点击跳转到题目位置 三、题目描述 给你一个下标从 0 开始的整数数组 arr 和一个 m x n 的整数 矩阵 mat 。arr 和 mat 都包含范围 [1&#xff0c;m * n] 内的 所有 整数。 从下标 0 开始遍历 arr 中的每…

750mA Linear Charger with Power Path Management

一、General Description YHM2711 is a highly integrated, single-cell Li-ion battery charger with system power path management for space-limited portable applications. The full charger function features Trickle-charge, constant current fast charge and const…

Linux中的UDEV机制与守护进程

Linux中的UDEV守护进程 udev简介守护进程守护进程概念守护进程程序设计守护进程的应用守护进程和后台进程的区别 UDEV的配置文件自动挂载U盘 udev简介 udev是一个设备管理工具&#xff0c;udev以守护进程的形式运行&#xff0c;通过侦听内核发出来的uevent来管理/dev目录下的设…

CPU 使用率和负载Load

优质博文&#xff1a;IT-BLOG-CN 一、CPU 使用率 CPU使用率是 CPU处理非空闲任务所花费的时间百分比 。例如单核CPU 1s内非空闲态运行时间为0.8s&#xff0c;那么它的CPU使用率就是80%&#xff1b;双核CPU 1s内非空闲态运行时间分别为0.4s和0.6s&#xff0c;那么&#xff0c;…

MySQL之锁

MySQL之锁 锁是计算机在执行多线程或线程时用于并发访问同一共享资源时的同步机制&#xff0c;MySQL中的锁是在服务器层或者存储引擎层实现的&#xff0c;保证了数据访问的一致性与有效性 MySQL锁可以按模式分类为&#xff1a;乐观锁与悲观锁。 按粒度分可以分为全局锁、表级锁…