SpringBoot 集成 ChatGPT,实战附源码

1 前言

在本文中,我们将探索在 Spring Boot 应用程序中调用 OpenAI ChatGPT API 的过程。我们的目标是开发一个 Spring Boot 应用程序,能够利用 OpenAI ChatGPT API 生成对给定提示的响应。

您可能熟悉 ChatGPT 中的术语“提示”。在 ChatGPT 或类似语言模型的上下文中,提示是指用户提供的用于生成响应的输入或初始文本。它是您输入到模型中以获得相关输出的文本或查询。

提示本质上是作为语言模型理解和生成连贯响应的指令或起点。提示的质量和清晰度会显著影响模型提供准确且相关的信息或响应的能力。

2 什么是 ChatGPT?

我向 ChatGPT 提出了这个问题,看看它会产生什么反应。

在这里插入图片描述

ChatGPT 是一种生成式人工智能,允许用户输入提示并接收类似人类的图像、文本或视频形式的输出,所有这些都是由人工智能生成的。

ChatGPT 目前使用 GPT-3.5 模型,通过微调过程改进算法。然而,增强版本 ChatGPT Plus 包含了 GPT-4 模型。此升级版本拥有更快的响应时间,支持互联网插件,并展示了处理图像描述、图像标题生成等复杂任务的改进功能。

OpenAI 将 GPT-4 描述为比其前身 GPT-3.5 先进十倍。这一进步使模型能够表现出更好的上下文理解和细微差别,从而导致更精确和连贯的响应。

3 OpenAI ChatGPT API

我们将调用create chat completion API (POST https://api.openai.com/v1/chat/completions )来生成对提示的响应。让我们探索一下 OpenAI ChatGTP API。

我们需要发送什么请求来调用 OpenAI API?

访问“create chat completion API ” 链接后,可以看到有关端点、请求和响应的以下信息。

端点:POST https://api.openai.com/v1/chat/completions

转到 Playgroud 并输入任何消息,例如“什么是 Spring Boot?”

在这里插入图片描述

现在点击“查看代码”。您将看到提示符“ What is spring boot?”的 curl 命令。”。

在这里插入图片描述
复制命令并导入到postman客户端中。

在这里插入图片描述
这是我们传递的请求,用于从 OpenAI 完成 API 获取响应。

检查 API 的基本请求参数:

  1. Model: 该参数指定请求将发送到的模型的版本。存在各种模型版本,为此,我们将使用 gpt-3.5-turbo 模型,这是最新的公开版本。
  2. Messages: 该参数作为模型的提示。每条消息都包含两个基本字段:“role”和“content”。“role”字段指定消息发送者,在请求中表示为“用户”,在响应中表示为“助理”。“content”字段包含实际的消息内容。

ModelMessage 是 API 请求中必须包含的参数。

其他可选参数包括:

  1. n: 默认值为1,表示为每个输入消息生成的响应数。
  2. temperature: 默认值为1,范围为0到2。该参数调节响应的随机性。较高的值会增加随机性,而较低的值会增强焦点和确定性。
  3. max_tokens: 默认情况下没有限制,但该参数允许您指定在响应中生成的最大令牌数量。事实证明,它在管理非常大的响应和控制成本方面非常有用。

在 Postman 中发出上述请求时,除非将 OpenAI API 密钥作为不记名令牌传递,否则将发生身份验证失败。必须包含 OpenAI API 密钥作为不记名令牌来验证 OpenAI ChatGPT 完成 API。

4 创建 OpenAI API 密钥

在此注册并创建您自己的 OpenAI API 密钥。

在这里插入图片描述

4.1 设置 Spring Boot 应用

现在让我们设置 Spring Boot 应用程序…

在这里插入图片描述
我们需要在 pom.xml 中添加以下依赖项

<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId>
</dependency>

在 dtos 包下创建 ChatBotRequest、ChatBotResponse 和 Message DTO:

@Data
@NoArgsConstructor
@AllArgsConstructor
public class ChatBotRequest {private String model;private List<Message> messages;private int n;private double temperature;private int max_tokens;
}--------------------@Data
@AllArgsConstructor
@NoArgsConstructor
public class ChatBotResponse {private List<Choice> choices;@Data@AllArgsConstructor@NoArgsConstructorpublic static class Choice {private int index;private Message message;}
}--------------------@Data
@NoArgsConstructor
@AllArgsConstructor
public class Message {private String role;private String content;}

在application.properties文件中添加以下配置:

openai.chatgtp.model=gpt-3.5-turbo
openai.chatgtp.api.key=REPLACE_WITH_YOUR_API_KEY
openai.chatgtp.api.url=https://api.openai.com/v1/chat/completionsopenai.chatgtp.max-completions=1
openai.chatgtp.temperature=0
openai.chatgtp.max_tokens=100

4.2 RestTemplate配置

在配置包下创建一个类OpenAIChatGtpConfig:

@Configuration
public class OpenAIChatGtpConfig {@Value("${openai.chatgtp.api.key}")private String openaiApiKey;@Beanpublic RestTemplate restTemplate() {RestTemplate restTemplate = new RestTemplate();restTemplate.getInterceptors().add((request, body, execution) -> {request.getHeaders().add("Authorization", "Bearer " + openaiApiKey);return execution.execute(request, body);});return restTemplate;}
}
  • @Value(“${openai.chatgtp.api.key}”):此注释用于从应用程序的属性文件注入值。在本例中,它从属性文件中检索 OpenAI 的 API 密钥。
  • restTemplate.getInterceptors().add(…):配置拦截器RestTemplate。该拦截器被添加到拦截器列表中,负责在发送 HTTP 请求之前对其进行修改。
  • 拦截器 ( (request, body, execution) -> { … }) 将“Authorization”标头添加到 HTTP 请求中。标头包含格式为“Bearer {apiKey}”的 OpenAI API 密钥。

总之,此配置类设置了一个RestTemplate带有拦截器的 bean,该拦截器将 OpenAI API 密钥添加到“Authorization”标头,确保由此发出的后续 HTTP 请求经过RestTemplate身份验证。

4.3 API控制器

现在,我们可以继续创建 REST 控制器,负责利用之前配置的RestTemplate来发出 API 请求并处理相应的 API 响应。

在controllers包下创建一个类ChatBotController:

@RestController
public class ChatBotController {@Autowiredprivate RestTemplate restTemplate;@Value("${openai.chatgtp.model}")private String model;@Value("${openai.chatgtp.max-completions}")private int maxCompletions;@Value("${openai.chatgtp.temperature}")private double temperature;@Value("${openai.chatgtp.max_tokens}")private int maxTokens;@Value("${openai.chatgtp.api.url}")private String apiUrl;@PostMapping("/chat")public BotResponse chat(@RequestParam("prompt") String prompt) {BotRequest request = new BotRequest(model,List.of(new Message("user", prompt)),maxCompletions,temperature,maxTokens);BotResponse response = restTemplate.postForObject(apiUrl, request, BotResponse.class);return response;}
}

现在我们已经完成了编码。让我们测试一下应用程序…

在这里插入图片描述
使用 OpenAI ChatGPT Completion API 我们可以实现什么?

以下是使用 OpenAI Completion API 和 ChatGPT 等模型可以实现的一些功能:

  • 自然语言生成: 您可以出于各种目的生成类似人类的文本,例如内容创建、创意写作等。
  • 文本摘要: 您可以使用该模型来总结长文本或文章,将信息压缩为更短、更容易理解的形式。
  • 语言翻译: 将文本从一种语言翻译成另一种语言。
  • 文本完成: 您可以使用 ChatGPT 来完成句子或段落,这对于填充文本的缺失部分非常有用。
  • 问答: 您可以向模型提出问题,它可以根据给出的上下文提供答案。
  • 对话代理: 开发聊天机器人、虚拟助理或其他对话式人工智能应用程序,以提供客户支持、信息检索或与用户互动。
  • 代码生成: 生成代码片段或通过提供代码示例、解释和解决方案来协助编程任务。
  • 数据输入和表格填写: 使用模型自动填写表格或完成数据输入任务。
  • 创意写作: 生成诗歌、故事或其他创意内容。
  • 语言理解: 分析和理解用户查询或消息中的意图和情绪。
  • 模拟角色: 在虚构角色之间创建对话和互动,以讲故事或开发游戏。
  • 教育援助: 为学生的问题提供解释和答案或帮助完成家庭作业。
  • 内容推荐: 根据用户的偏好和查询向他们推荐内容、产品或服务。
  • 起草电子邮件或文档: 协助撰写电子邮件、报告或其他书面文档。
  • 模拟用户行为: 生成用户评论、评论或反馈以用于测试和培训目的。

这些只是使用 OpenAI Completion API 和 ChatGPT 等模型可以实现的一些示例。这些模型的多功能性使其对于各个行业的广泛应用都很有价值,包括教育、医疗保健、客户服务、内容生成等。请记住,生成的文本的质量可能会根据特定用例和提供给模型的输入数据而有所不同。

5 项目源码

https://github.com/363153421/chatgpt-springboot-integration

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/210308.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

013 OpenCV copyMakeBorder(padding)

目录 一、环境 二、原理 三、完整代码 一、环境 本文使用环境为&#xff1a; Windows10Python 3.9.17opencv-python 4.8.0.74 二、原理 cv.copyMakeBorder是OpenCV库中的一个函数&#xff0c;用于在图像周围添加边框&#xff08;padding&#xff09;。这个函数可以用于图…

WPF窗口样式的比较

WPF窗口样式的比较 1.WPF默认Window窗口 带有图标 标题栏 最小最大化推出按钮 <Window x:Class"GlowWindowDemo.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006…

TCP/IP的体系结构

目录 一、TCP/IP的体系结构 二、TCP/IP四层协议的表示方法举例 三、现在因特网使用的TCP/IP体系结构 四、互联网应用层的客户——服务器方式 一、TCP/IP的体系结构 二、TCP/IP四层协议的表示方法举例 三、现在因特网使用的TCP/IP体系结构 四、互联网应用层的客户——服务器…

【C++11(一)】右值引用以及列表初始化

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:C从入门到精通⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你学习C   &#x1f51d;&#x1f51d; C11 1. 前言2. 统一的列表初始化3. initializer…

基于单片机远程温控检测系统

**单片机设计介绍&#xff0c;基于单片机远程温控检测系统&#xff08;含上位机&#xff09; 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机的远程温控检测系统可以用于远程监测和控制温度&#xff0c;实现远程温度监…

城市NOA加速落地,景联文科技高质量数据标注助力感知系统升级

当前&#xff0c;自动驾驶技术的演进正在经历着从基础L2到L3过渡的重要阶段&#xff0c;其中NOA&#xff08;自动辅助导航驾驶&#xff09;扮演着至关重要的角色。城市NOA&#xff08;L2.9&#xff09;作为城市场景下的NOA&#xff0c;被看作是车企向更高阶自动驾驶迈进的必经之…

计算机基础知识61

JsonResponse 功能例子 你自己写一个类&#xff0c;实现JsonResponse 功能&#xff0c;不需要传safeFalse&#xff0c;无论字典或列表&#xff0c;都能完成序列化返回给前端 1 响应头例子 四种情况&#xff0c;在响应头返回数据 xxxx # 第一种情况 JsonResponse def show(req…

Python调用腾讯云短信服务发送手机短信

文章目录 1、准备工作2、代码实现3、拓展4、闲聊关于Python技术储备一、Python所有方向的学习路线二、Python基础学习视频三、精品Python学习书籍四、Python工具包项目源码合集①Python工具包②Python实战案例③Python小游戏源码五、面试资料六、Python兼职渠道 1、准备工作 p…

身份统一管理创新与优化 ——华为云OneAccess应用身份管理服务的2023年

2023年&#xff0c;随着云计算、物联网、人工智能等技术的快速发展&#xff0c;企业面临着数字化转型的巨大挑战与机遇。身份统一管理是企业数字化转型的基础&#xff0c;也是业务发展的关键。如何高效、安全、灵活地实现身份统一管理&#xff0c;成为企业亟待解决的首要课题。…

硬盘分区丢失?这样轻松恢复!

​“在我安装操作系统的过程中&#xff0c;我先把C盘&#xff08;100G&#xff09;进行了格式化&#xff0c;而我的D盘大小为297G&#xff0c;然而在Win PE中&#xff0c;所显示的仅是247G&#xff08;CD盘总容量&#xff09;&#xff0c;这247G是空无一物的。让我感到困惑的是…

D7292 双向直流电机驱动电路 ( 速度可控 ) 7V~20V 400mA,峰值电流可达1.2A 采用DIP8、SOP8的封装形式

D7292是一块带有制动和速度控制功能的双向直流电机单片电路。它可以用来驱动CDP、VCR 和 TOY等负载。该电路通过两个逻辑输入管脚的电压&#xff0c;可以控制电机正反 个方向转动以及制动。并且可以通过改变速度控制管脚的电压&#xff0c;从而方便的改变电机的速度。D7292采用…

前端项目中CDN的一些问题【性能优化篇】

1. CDN的概念 CDN&#xff08;Content Delivery NetWork&#xff0c;内容分发网络&#xff09;&#xff0c;是指利用最靠近每位用户的服务区&#xff0c;更快的将资源发送给用户。 提高用户的访问速度减轻服务器压力提高网站的稳定性和安全性 2. CDN的作用 CDN一般用来托管…

WPF绘制进度条(弧形,圆形,异形)

前言 WPF里面圆形进度条实现还比较麻烦,主要涉及到的就是动态绘制进度条的进度需要用到简单的数学算法。其实原理比较简单,我们需要的是话两条重叠的弧线,里面的弧线要比里面的弧线要宽,这样简单的雏形就出来了。 基础写法 我们可以用Path来绘制弧线,代码如下: <Gr…

双向ESD保护 汽车级TVS二极管 ESD9B3.3ST5G工作原理、特性参数、封装形式

什么是汽车级TVS二极管&#xff1f; TVS二极管是一种用于保护电子电路的电子元件。它主要用于电路中的过电压保护&#xff0c;防止电压过高而损坏其他部件。TVS二极管通常被称为“汽车级”是因为它们能够满足汽车电子系统的特殊要求。 在汽车电子系统中&#xff0c;由于车辆启…

怎么对文件加密?文件加密软件操作保姆式演示!

大家是不是遇到过这种情况&#xff0c;文件一个不小心就被别人轻易外发出去&#xff0c;并且还是特别重要的内容。在企业中这种现象已经非常常见啦。 今天就给友友们&#xff0c;分享一款神器&#xff0c;它可以让你点点鼠标&#xff0c;就对企业的重要文件进行加密。 1、获取…

Hdoop学习笔记(HDP)-Part.17 安装Spark2

目录 Part.01 关于HDP Part.02 核心组件原理 Part.03 资源规划 Part.04 基础环境配置 Part.05 Yum源配置 Part.06 安装OracleJDK Part.07 安装MySQL Part.08 部署Ambari集群 Part.09 安装OpenLDAP Part.10 创建集群 Part.11 安装Kerberos Part.12 安装HDFS Part.13 安装Ranger …

[HTML]Web前端开发技术6(HTML5、CSS3、JavaScript )DIV与SPAN,盒模型,Overflow——喵喵画网页

希望你开心&#xff0c;希望你健康&#xff0c;希望你幸福&#xff0c;希望你点赞&#xff01; 最后的最后&#xff0c;关注喵&#xff0c;关注喵&#xff0c;关注喵&#xff0c;佬佬会看到更多有趣的博客哦&#xff01;&#xff01;&#xff01; 喵喵喵&#xff0c;你对我真的…

分享67个节日PPT,总有一款适合您

分享67个节日PPT&#xff0c;总有一款适合您 67个节日PPT下载链接&#xff1a;https://pan.baidu.com/s/1oU-UUCV_69e8Gp5Y6zrzVA?pwd6666 提取码&#xff1a;6666 Python采集代码下载链接&#xff1a;采集代码.zip - 蓝奏云 学习知识费力气&#xff0c;收集整理更不易…

Interpretable Multimodal Misinformation Detection with Logic Reasoning

原文链接 Hui Liu, Wenya Wang, and Haoliang Li. 2023. Interpretable Multimodal Misinformation Detection with Logic Reasoning. In Findings of the Association for Computational Linguistics: ACL 2023, pages 9781–9796, Toronto, Canada. Association for Computa…

uniapp自定义进度条组件

目标效果 原型设计为这样的样式&#xff0c;但是现有的进度条组件样式都无法满足需求&#xff0c;于是编写组件实现。 设计引用格式为 <zLineProgress :total"15" :val"7" title"你好吗" />定义组件 <template><view style&…