Leetcode2477. 到达首都的最少油耗

Every day a Leetcode

题目来源:2477. 到达首都的最少油耗

解法1:贪心 + 深度优先搜索

题目等价于给出了一棵以节点 0 为根结点的树,并且初始树上的每一个节点上都有一个人,现在所有人都需要通过「车子」向结点 0 移动。

对于某一个节点 x(x 不等于 0),其父节点为 y,因为以节点 x 为根节点的子树上的人都需要通过边 x->y 向节点 0 移动,所以为了使这条边上的「车子」利用率最高,我们贪心的让 x 的全部子节点上的人到了节点 x 再一起坐车向上移动,我们不妨设以节点 x 为根节点的子树大小为 cntx,那么我们至少需要「车子」的数量为⌈cntx/seats⌉,其中 seats 是每辆车里面座位的数目。

那么我们可以通过从根结点 0 往下进行「深度优先搜索」,每一条边上「车子」的数目即为该条边上汽油的开销,统计全部边上汽油的开销即为最终答案。

示例:

请添加图片描述

代码:

/** @lc app=leetcode.cn id=2477 lang=cpp** [2477] 到达首都的最少油耗*/// @lc code=start
class Solution
{
private:long long ans = 0;public:long long minimumFuelCost(vector<vector<int>> &roads, int seats){// 特判if (roads.empty() || seats == 0)return 0;int n = roads.size();vector<vector<int>> edges(n + 1);for (vector<int> &road : roads){int from = road[0], to = road[1];// 记录每个点的邻居edges[from].push_back(to);edges[to].push_back(from);}function<int(int, int)> dfs = [&](int x, int father) -> int{int subTreeSize = 1;for (int &y : edges[x])if (y != father) // 递归子节点,不能递归父节点{// 统计子树大小subTreeSize += dfs(y, x);}if (x != 0) // x 不是根节点ans += ceil(1.0 * subTreeSize / seats);return subTreeSize;};dfs(0, -1);return ans;}
};
// @lc code=end

结果:

在这里插入图片描述

复杂度分析:

时间复杂度:O(n),其中 n 是数组 roads 的长度。递归这棵树,每个节点至多访问一次。

空间复杂度:O(n),其中 n 是数组 roads 的长度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/213244.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微软NativeApi-NtQuerySystemInformation

微软有一个比较实用的Native接口&#xff1a;NtQuerySystemInformation&#xff0c;具体可以参考微软msdn官方文档&#xff1a;NtQuerySystemInformation&#xff0c; 是一个系统函数&#xff0c;用于收集特定于所提供的指定种类的系统信息。ProcessHacker等工具使用NtQuerySys…

C/C++,优化算法——双离子推销员问题(Bitonic Travelling Salesman Problem)的计算方法与源代码

1 文本格式 // C program for the above approach #include <bits/stdc.h> using namespace std; // Size of the array a[] const int mxN 1005; // Structure to store the x and // y coordinates of a point struct Coordinates { double x, y; } a[mxN]; //…

luceda ipkiss教程 43:画渐变圆弧型波导

案例分享&#xff1a; from si_fab import all as pdk import ipkiss3.all as i3 from ipcore.properties.restrictions import RestrictTuple from ipkiss.geometry.shapes.modifiers import __ShapePathBase__ import numpy as np from math import atan2class ShapePathTa…

优化 SQL 日志记录的方法

为什么 SQL 日志记录是必不可少的 SQL 日志记录在数据库安全和审计中起着至关重要的作用&#xff0c;它涉及跟踪在数据库上执行的所有 SQL 语句&#xff0c;从而实现审计、故障排除和取证分析。SQL 日志记录可以提供有关数据库如何访问和使用的宝贵见解&#xff0c;使其成为确…

Kubersphere应用【二】Docker安装

一、Docker安装 1.下载Docker安装包 【地址】Index of linux/static/stable/x86_64/ 2.上传至服务器 # 解压文件 tar -xvf docker-20.10.10.tgz# 将docker 目录中的所有文件复制至/usr/bin/目录下 cp docker/* /usr/bin 3.配置docker.service文件 vim /usr/lib/systemd/sy…

MacBook 逆水寒下载安装使用教程,支持最新版本 MacOS 流畅不闪退

最近 MacBook 系统更新到了 MacOS 14.1 很多朋友的逆水寒玩不了了&#xff0c;我尝试了一番可以正常玩了&#xff0c;看图&#xff1a; 其实操作也很简单&#xff0c;我们从头开始&#xff0c;因为 MacOS 系统的更新所以我们也需要更新新版本的 playCover 来适配新的系统&#…

MBD Introduction

介绍 MATLAB是MathWorks公司的商业数学软件&#xff0c;应用于科学计算、可视化以及交互式程序设计等高科技计算环境。Simulink是MATLAB中的一种可视化仿真工具。 Simulink是一个模块图环境&#xff0c;用于多域仿真以及基于模型的设计。它支持系统设计、仿真、自动代码生成以…

Github入门教程之高效搜索和查看需要的项目

对咱们新入门的小白来说&#xff0c;前两天手把手注册 Github 账号的任务已经完成&#xff0c;接下来&#xff0c;学习如何高效搜索和查看自己感兴趣的内容。 下面是之前教程传送门 超详细GitHub注册和登录教程-CSDN博客 一. 搜索 可以在页面左上角「Search or jump to ...」…

了解一下Spring Security吧

目录 1. 什么是Spring Security&#xff1f; 2. 核心概念 2.1 认证&#xff08;Authentication&#xff09; 2.2 授权&#xff08;Authorization&#xff09; 2.3 过滤器链&#xff08;Filter Chain&#xff09; 3. 使用Spring Security保护Web应用 3.1 配置Web安全性 …

Python---继承

1、什么是继承 我们接下来来聊聊Python代码中的“继承”&#xff1a;类是用来描述现实世界中同一组事务的共有特性的抽象模型&#xff0c;但是类也有上下级和范围之分&#xff0c;比如&#xff1a;生物 > 动物 > 哺乳动物 > 灵长型动物 > 人类 > 黄种人 从哲学…

做数据分析为何要学统计学(5)——什么问题适合使用t检验?

t检验&#xff08;Students t test&#xff09;&#xff0c;主要依靠总体正态分布的小样本&#xff08;例如n < 30&#xff09;对总体均值水平进行差异性判断。 t检验要求样本不能超过两组&#xff0c;且每组样本总体服从正态分布&#xff08;对于三组以上样本的&#xff0…

P4 Qt如何添加qss样式表文件和添加图片资源

目录 前言 01 添加图片资源文件 02 添加qss文件 前言 &#x1f3ac; 个人主页&#xff1a;ChenPi &#x1f43b;推荐专栏1: 《C_ChenPi的博客-CSDN博客》✨✨✨ &#x1f525; 推荐专栏2: 《Qt基础_ChenPi的博客-CSDN博客》✨✨✨ &#x1f33a;本篇简介 &#xff1a;这一章…

阿里云磁盘在线扩容

我们从阿里云的控制面板中给硬盘扩容后结果发现我们的磁盘空间并没有改变 注意&#xff1a;本次操作是针对CentOS 7的 &#xfeff;#使用df -h并没有发现我们的磁盘空间增加 #使用fdisk -l发现确实还有部分空间 运行df -h命令查看云盘分区大小。 以下示例返回分区&#xf…

response应用及重定向和request转发

请求和转发&#xff1a; response说明一、response文件下载二、response验证码实现1.前置知识&#xff1a;2.具体实现&#xff1a;3.知识总结 三、response重定向四、request转发五、重定向和转发的区别 response说明 response是指HttpServletResponse,该响应有很多的应用&…

以柔克刚:软体机器人的柔性革命与无限可能

原创 | 文 BFT机器人 戳“精彩内容”不容错过 你知道什么是软体机器人吗&#xff1f;真的是表面所理解的那样&#xff0c;这个“机器人是软的&#xff1f;”。当然不是啦&#xff01;那下面小编将带你具体解读一下软体机器人的来源与发展。 软体机器人是一类由软体驱动材料构成…

论文笔记--Gemini: A Family of Highly Capable Multimodal Models

论文笔记-- 1. 文章简介2. 文章概括3 文章重点技术3.1 模型架构3.2 训练数据3.3 模型评估3.3.1 文本3.3.1.1 Science3.3.1.2 Model sizes3.3.1.3 Multilingual3.3.1.4 Long Context3.3.1.5 Human preference 3.3.2 多模态3.3.2.1 图像理解3.3.2.2 视频理解3.3.2.3 图像生成3.3.…

Linux下通过find找文件---通过修改时间查找(-mtime)

通过man手册查找和-mtime选项相关的内容 man find | grep -A 3 mtime # 这里简单介绍了 -mtime &#xff0c;还有一个简单的示例-mtime n Files data was last modified n*24 hours ago. See the comments for -atime to understand how rounding affects the interpretati…

时间序列预测 — VMD-LSTM实现单变量多步光伏预测(Tensorflow):单变量转为多变量

目录 1 数据处理 1.1 导入库文件 1.2 导入数据集 1.3 缺失值分析 2 VMD经验模态分解 3 构造训练数据 4 LSTM模型训练 5 预测 1 数据处理 1.1 导入库文件 import time import datetime import pandas as pd import numpy as np import matplotlib.pyplot as plt f…

spring boot学习第五篇:spring boot与JPA结合

1、准备表&#xff0c;创建表语句如下 CREATE TABLE girl (id int(11) NOT NULL AUTO_INCREMENT,cup_Size varchar(100) COLLATE utf8mb4_bin DEFAULT NULL,age int(11) DEFAULT NULL,PRIMARY KEY (id) ) ENGINEInnoDB AUTO_INCREMENT4 DEFAULT CHARSETutf8mb4 COLLATEutf8mb4…

python爬取robomaster论坛文章数据,携带登录信息

一. 内容简介 python爬取robomaster论坛文章数据。 二. 软件环境 2.1vsCode 2.2Anaconda version: conda 22.9.0 2.3代码 三.主要流程 3.1 接口分析&#xff0c;以及网页结构分析 # 这是文章链接,其实id就是文章的id # https://bbs.robomaster.com/forum.php?modview…