从线性回归到神经网络

目录

一、线性回归关键思想

1、线性模型

2、基础优化算法

二、线性回归的从零开始实现

1、生成数据集

2、读取数据集

3、初始化模型参数

4、定义模型

5、定义损失函数

6、定义优化算法

7、训练

三、线性回归的简洁实现

1、生成数据集

2、读取数据集

3、定义模型

4、初始化模型参数

5、定义损失函数

6、定义优化算法

7、训练


一、线性回归关键思想

1、线性模型

2、基础优化算法


二、线性回归的从零开始实现

       在了解线性回归的关键思想之后,我们可以开始通过代码来动手实现线性回归了。在这一节中,我们将从零开始实现整个方法,包括数据流水线、模型、损失函数和小批量随机梯度下降优化器。虽然现代的深度学习框架几乎可以自动化地进行所有这些工作,但从零开始实现可以确保我们真正知道自己在做什么。同时,了解更细致的工作原理将方便我们自定义模型、自定义层或自定义损失函数。在这一节中,我们将只使用张量和自动求导。在之后的章节中,我们会充分利用深度学习框架的优势,介绍更简洁的实现方式。

import random
import torch
from d2l import torch as d2l

1、生成数据集

       为了简单起见,我们将根据带有噪声的线性模型构造一个人造数据集。我们的任务是使用这个有限样本的数据集来恢复这个模型的参数。我们将使用低维数据,这样可以很容易地将其可视化。

       在下面的代码中,我们生成一个包含1000个样本的数据集,每个样本包含从标准正态分布中采样的2个特征。我们的合成数据集是一个矩阵$\mathbf{X}\in \mathbb{R}^{1000 \times 2}$(我们使用线性模型参数$\mathbf{w} = [2, -3.4]^\top$$b = 4.2$和噪声项$\epsilon$生成数据集及其标签):

$\mathbf{y}= \mathbf{X} \mathbf{w} + b + \mathbf\epsilon.$

       $\epsilon$可以视为模型预测和标签时的潜在观测误差。在这里我们认为标准假设成立,即$\epsilon$服从均值为0的正态分布。为了简化问题,我们将标准差设为0.01。

       下面的代码生成合成数据集。

def synthetic_data(w, b, num_examples):  #@save"""生成y=Xw+b+噪声w:真实权重 b:真实偏差量 num_examples:生成数据数量"""X = torch.normal(0, 1, (num_examples, len(w)))  # 生成元素均值为0、标准差为1的Xy = torch.matmul(X, w) + by += torch.normal(0, 0.01, y.shape)             # 有偏差量的y值(偏差量均值为0、标准差为0.01)return X, y.reshape((-1, 1))                    # 返回X和有偏差量的y值
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)

       注意,`features`中的每一行都包含一个二维数据样本,`labels`中的每一行都包含一维标签值(一个标量)。

print('features:', features[0],'\nlabel:', labels[0])
features: tensor([2.0776e+00, 3.4160e-04]) 
label: tensor([8.3580])

2、读取数据集

       训练模型时要对数据集进行遍历,每次抽取一小批量样本,并使用它们来更新我们的模型。由于这个过程是训练机器学习算法的基础,所以有必要定义一个函数,该函数能打乱数据集中的样本并以小批量方式获取数据。

       在下面的代码中,我们定义一个`data_iter`函数,该函数接收批量大小、特征矩阵和标签向量作为输入,生成大小为`batch_size`的小批量。每个小批量包含一组特征和标签。

def data_iter(batch_size, features, labels):num_examples = len(features)indices = list(range(num_examples))# 这些样本是随机读取的,没有特定的顺序random.shuffle(indices)for i in range(0, num_examples, batch_size):batch_indices = torch.tensor(indices[i: min(i + batch_size, num_examples)])      # indices是一个列表,这里是把列表索引在区间[i: min(i + batch_size, num_examples)]的元素列表生成tensoryield features[batch_indices], labels[batch_indices]    # yield用法:https://blog.csdn.net/mieleizhi0522/article/details/82142856

       通常,我们利用GPU并行运算的优势,处理合理大小的“小批量”。每个样本都可以并行地进行模型计算,且每个样本损失函数的梯度也可以被并行计算。GPU可以在处理几百个样本时,所花费的时间不比处理一个样本时多太多。

       我们直观感受一下小批量运算:读取第一个小批量数据样本并打印。每个批量的特征维度显示批量大小和输入特征数。同样的,批量的标签形状与`batch_size`相等。

batch_size = 10for X, y in data_iter(batch_size, features, labels):    # 注意下面有个break,循环只进行一轮print(X, '\n', y)break
tensor([[ 0.1776, -1.4407],[ 0.5218,  0.1639],[ 1.0650, -0.9711],[-0.1460,  1.1675],[ 0.7669, -1.7807],[ 1.0836, -0.3052],[-0.2531,  0.7157],[-1.6888,  0.1888],[-1.5185,  0.5466],[-0.9307,  1.2468]]) tensor([[ 9.4513],[ 4.6777],[ 9.6400],[-0.0656],[11.7774],[ 7.4136],[ 1.2694],[ 0.2010],[-0.7028],[-1.8955]])

       当我们运行迭代时,我们会连续地获得不同的小批量,直至遍历完整个数据集。上面实现的迭代对教学来说很好,但它的执行效率很低,可能会在实际问题上陷入麻烦。例如,它要求我们将所有数据加载到内存中,并执行大量的随机内存访问。在深度学习框架中实现的内置迭代器效率要高得多,它可以处理存储在文件中的数据和数据流提供的数据。

3、初始化模型参数

       在我们开始用小批量随机梯度下降优化我们的模型参数之前,我们需要先有一些参数。在下面的代码中,我们通过从均值为0、标准差为0.01的正态分布中采样随机数来初始化权重,并将偏置初始化为0。

w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)

       在初始化参数之后,我们的任务是更新这些参数,直到这些参数足够拟合我们的数据。每次更新都需要计算损失函数关于模型参数的梯度。有了这个梯度,我们就可以向减小损失的方向更新每个参数。因为手动计算梯度很枯燥而且容易出错,所以没有人会手动计算梯度。我们使用pytorch的自动微分来计算梯度。

4、定义模型

       接下来,我们必须定义模型,将模型的输入和参数同模型的输出关联起来。回想一下,要计算线性模型的输出,我们只需计算输入特征$\mathbf{X}$和模型权重$\mathbf{w}$的矩阵,向量乘法后加上偏置$b$

       注意,上面的$\mathbf{Xw}$是一个向量,而$b$是一个标量。回想一下torch中描述的广播机制:当我们用一个向量加一个标量时,标量会被加到向量的每个分量上。

def linreg(X, w, b):"""线性回归模型"""return torch.matmul(X, w) + b

5、定义损失函数

       因为需要计算损失函数的梯度,所以我们应该先定义损失函数。这里我们使用平方损失函数。在实现中,我们需要将真实值`y`的形状转换为和预测值`y_hat`的形状相同。

def squared_loss(y_hat, y):"""均方损失"""return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

6、定义优化算法

       正如我们在前面讨论的,线性回归有解析解。尽管线性回归有解析解,但本书中的其他模型却没有,因此需要使用优化算法,这里我们介绍小批量随机梯度下降。

       在每一步中,使用从数据集中随机抽取的一个小批量,然后根据参数计算损失的梯度。接下来,朝着减少损失的方向更新我们的参数。下面的函数实现小批量随机梯度下降更新。该函数接受模型参数集合、学习速率和批量大小作为输入。每一步更新的大小由学习速率`lr`决定。因为我们计算的损失是一个批量样本的总和,所以我们用批量大小`batch_size`来规范化步长,这样步长大小就不会取决于我们对批量大小的选择。

def sgd(params, lr, batch_size):"""小批量随机梯度下降"""with torch.no_grad():    # 模型参数更新的时候不需要进行梯度计算for param in params:param -= lr * param.grad / batch_size  # 自动求导,梯度会自动存在于.grad里面,注意这里要除以batch_size,这样不管batch_size有多大,学习率其实都差不多,这样学习率更容易调,相当于少个变量param.grad.zero_()    # 用完梯度参数后将梯度设0,防止Pytorch在下次计算时累积梯度

7、训练

       现在我们已经准备好了模型训练所有需要的要素,可以实现主要的训练过程部分了。理解这段代码至关重要,因为从事深度学习后,相同的训练过程几乎一遍又一遍地出现。

       在每次迭代中,我们读取一小批量训练样本,并通过我们的模型来获得一组预测(正向传播)。计算完损失后,我们开始反向传播,存储每个参数的梯度(反向传播的作用就是根据正向传播的loss计算梯度)。最后,我们调用优化算法`sgd`来更新模型参数(优化算法的作用就是根据梯度来更新参数值)。

       概括一下,我们将执行以下循环,重复以下训练,直到完成:

                       Ⅰ.计算梯度:$\mathbf{g} \leftarrow \partial_{(\mathbf{w},b)} \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} l(\mathbf{x}^{(i)}, y^{(i)}, \mathbf{w}, b)$

Ⅱ.更新参数:$(\mathbf{w}, b) \leftarrow (\mathbf{w}, b) - \eta \mathbf{g}$

       在每个迭代周期(epoch)中,我们使用`data_iter`函数遍历整个数据集,并将训练数据集中所有样本都使用一次(假设样本数能够被批量大小整除)。这里的迭代周期个数`num_epochs`和学习率`lr`都是超参数,分别设为3和0.03。设置超参数很棘手,需要通过反复试验进行调整。我们现在忽略这些细节,以后会详细介绍。

lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):for X, y in data_iter(batch_size, features, labels):l = loss(net(X, w, b), y)  # X和y的小批量损失# 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,# 并以此计算关于[w,b]的梯度l.sum().backward()            # 每一个batch_size计算一次损失,将一个batch的损失求和后反向传播计算梯度,每次循环算一次梯度就行,后面不再需要计算梯度,sgd里面也是有‘with torch.no_grad()’的sgd([w, b], lr, batch_size)   # 使用参数的梯度更新参数,梯度用完后清零,防止累积with torch.no_grad():    # 关闭梯度运算train_l = loss(net(features, w, b), labels)    # 用当前参数计算所有数据的损失print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')
epoch 1, loss 0.039029
epoch 2, loss 0.000140
epoch 3, loss 0.000048

       因为我们使用的是自己合成的数据集,所以我们知道真正的参数是什么。因此,我们可以通过比较真实参数和通过训练学到的参数来评估训练的成功程度。事实上,真实参数和通过训练学到的参数确实非常接近。

print(f'w的估计误差: {true_w - w.reshape(true_w.shape)}')
print(f'b的估计误差: {true_b - b}')
w的估计误差: tensor([ 4.8280e-05, -2.8586e-04], grad_fn=<SubBackward0>)
b的估计误差: tensor([0.0010], grad_fn=<RsubBackward1>)

       注意,我们不应该想当然地认为我们能够完美地求解参数。在机器学习中,我们通常不太关心恢复真正的参数,而更关心如何高度准确预测参数。幸运的是,即使是在复杂的优化问题上,随机梯度下降通常也能找到非常好的解。其中一个原因是,在深度网络中存在许多参数组合能够实现高度精确的预测。

三、线性回归的简洁实现

1、生成数据集

       与线性回归的从零开始实现类似,我们首先生成数据集。

import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)

2、读取数据集

       我们可以调用框架中现有的API来读取数据。我们将`features`和`labels`作为API的参数传递,并通过数据迭代器指定`batch_size`。此外,布尔值`is_train`表示是否希望数据迭代器对象在每个迭代周期内打乱数据。

def load_array(data_arrays, batch_size, is_train=True):"""构造一个PyTorch数据迭代器"""dataset = data.TensorDataset(*data_arrays)return data.DataLoader(dataset, batch_size, shuffle=is_train)
batch_size = 10
data_iter = load_array((features, labels), batch_size)

3、定义模型

       对于标准深度学习模型,我们可以使用框架的预定义好的层。这使我们只需关注使用哪些层来构造模型,而不必关注层的实现细节。我们首先定义一个模型变量`net`,它是一个`Sequential`类的实例。`Sequential`类将多个层串联在一起。当给定输入数据时,`Sequential`实例将数据传入到第一层,然后将第一层的输出作为第二层的输入,以此类推。

       在下面的例子中,我们的模型只包含一个层,因此实际上不需要`Sequential`。但是由于以后几乎所有的模型都是多层的,在这里使用`Sequential`会让你熟悉“标准的流水线”。

       单层网络架构这一单层被称为全连接层(fully-connected layer),因为它的每一个输入都通过矩阵向量乘法得到它的每个输出。

       在PyTorch中,全连接层在`Linear`类中定义。值得注意的是,我们将两个参数传递到`nn.Linear`中。第一个指定输入特征形状,即2,第二个指定输出特征形状,输出特征形状为单个标量,因此为1。

# nn是神经网络的缩写
from torch import nnnet = nn.Sequential(nn.Linear(2, 1))

4、初始化模型参数

       在使用`net`之前,我们需要初始化模型参数。如在线性回归模型中的权重和偏置。深度学习框架通常有预定义的方法来初始化参数。在这里,我们指定每个权重参数应该从均值为0、标准差为0.01的正态分布中随机采样,偏置参数将初始化为零。

       正如我们在构造`nn.Linear`时指定输入和输出尺寸一样,现在我们能直接访问参数以设定它们的初始值。我们通过`net[0]`选择网络中的第一个图层,然后使用`weight.data`和`bias.data`方法访问参数。我们还可以使用替换方法`normal_`和`fill_`来重写参数值。

net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)

5、定义损失函数

       计算均方误差使用的是`MSELoss`类,也称为平方$L_2$范数。默认情况下,它返回所有样本损失的平均值。

loss = nn.MSELoss()

6、定义优化算法

       小批量随机梯度下降算法是一种优化神经网络的标准工具,PyTorch在`optim`模块中实现了该算法的许多变种。当我们(实例化一个`SGD`实例)时,我们要指定优化的参数(可通过`net.parameters()`从我们的模型中获得)以及优化算法所需的超参数字典。小批量随机梯度下降只需要设置`lr`值,这里设置为0.03。

trainer = torch.optim.SGD(net.parameters(), lr=0.03)

7、训练

       通过深度学习框架的高级API来实现我们的模型只需要相对较少的代码。我们不必单独分配参数、不必定义我们的损失函数,也不必手动实现小批量随机梯度下降。当我们需要更复杂的模型时,高级API的优势将大大增加。当我们有了所有的基本组件,训练过程代码与我们从零开始实现时所做的非常相似。

       回顾一下:在每个迭代周期里,我们将完整遍历一次数据集(`train_data`),不停地从中获取一个小批量的输入和相应的标签。对于每一个小批量,我们会进行以下步骤:

                * 通过调用`net(X)`生成预测并计算损失`l`(前向传播)。

                * 通过进行反向传播来计算梯度。

                * 通过调用优化器来更新模型参数。

       为了更好的衡量训练效果,我们计算每个迭代周期后的损失,并打印它来监控训练过程。

num_epochs = 3
for epoch in range(num_epochs):for X, y in data_iter:l = loss(net(X) ,y)    # 正向传播计算losstrainer.zero_grad()    # 梯度清零,l.backward()会计算这次的梯度,因此要在l.backward()之前进行,不然会将上次的梯度与这次的累加l.backward()           # 反向传播计算梯度trainer.step()         # 用优化器进行优化l = loss(net(features), labels)print(f'epoch {epoch + 1}, loss {l:f}')
epoch 1, loss 0.000248
epoch 2, loss 0.000103
epoch 3, loss 0.000103

       下面我们比较生成数据集的真实参数和通过有限数据训练获得的模型参数。要访问参数,我们首先从`net`访问所需的层,然后读取该层的权重和偏置。正如在从零开始实现中一样,我们估计得到的参数与生成数据的真实参数非常接近。

w = net[0].weight.data
print('w的估计误差:', true_w - w.reshape(true_w.shape))
b = net[0].bias.data
print('b的估计误差:', true_b - b)
w的估计误差: tensor([-0.0010, -0.0003])
b的估计误差: tensor([-0.0003])

       ------注:本文图片和代码均来自李沐老师的课件,另外加了一些个人注释,感谢李沐老师分享

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/214557.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Nodejs后端+express框架

前言 基于vue3Node后台管理项目&#xff0c;补充nodejs和express相关知识。 文章目录 一&#xff0c;express 1.官网 Express - 基于 Node.js 平台的 web 应用开发框架 - Express中文文档 | Express中文网 2.安装 npm install express --save 二、MongoDB 特点 非关…

ActiveMQ任意文件写入漏洞(CVE-2016-3088)

简述&#xff1a;ActiveMQ的fileserver支持写入文件(但是不支持解析jsp),同时也支持移动文件。所以我们只需要先上传到服务器&#xff0c;然后再移动到可以解析的地方即可造成任意文件写入漏洞。我们可以利用这个漏洞来上传webshell或者上传定时任务文件。 漏洞复现 启动环境 …

持续集成交付CICD:Jenkins流水线实现Nexus制品晋级策略

目录 一、理论 1.开发测试运维环境 二、实验 1.Nexus制品晋级策略 一、理论 1.开发测试运维环境 &#xff08;1&#xff09;环境 1&#xff09;持续集成开发环境&#xff08;DEV: Development Environment&#xff09; 直接通过源代码编译打包&#xff0c;其会跑单元测试…

最新Redis7持久化(权威出版)

首先我们要知道什么是持久化&#xff1a;持久化是指将数据保存到磁盘上&#xff0c;以确保在Redis服务器重启时数据不会丢失。 Redis支持两种主要的持久化方式&#xff1a;RDB持久化和AOF持久化 下面让我依次给你介绍一下&#xff1a; RDB持久化 作用 这是将Redis数据保存…

二分查找|滑动窗口|前缀和|LeetCode209: 长度最小的子数组

长度最短的子数组 作者推荐 【动态规划】【广度优先】LeetCode2258:逃离火灾 本文涉及的基础知识点 二分查找算法合集 C算法&#xff1a;前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频 滑动窗口 题目 给定一个含有 n 个正整数的数组和一个正整数 target…

基于JavaWeb+SSM+Vue微信小程序的科创微应用平台系统的设计和实现

基于JavaWebSSMVue微信小程序的科创微应用平台系统的设计和实现 源码获取入口Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 源码获取入口 Lun文目录 1系统概述 1 1.1 研究背景 1 1.2研究目的 1 1.3系统设计思想 1 2相关技术…

MongoDB的条件操作符

本文主要介绍MongoDB的条件操作符。 目录 MongoDB条件操作符1.比较操作符2.逻辑操作符3.元素操作符4.数组操作符5.文本搜索操作符 MongoDB条件操作符 MongoDB的条件操作符主要分为比较操作符、逻辑操作符、元素操作符、数组操作符、文本搜索操作符等几种类型。 以下是这些操作…

前端开发tips

前端开发tips 关于package.json里面&#xff0c;尖角号&#xff08;^&#xff09;和波浪线&#xff08;~&#xff09;的区别 在package.json里面&#xff0c;我们可以使用尖角号&#xff08;^&#xff09;和波浪线&#xff08;~&#xff09;来表示不同的包版本。这些符号通常被…

mysql中的DQL查询

表格为&#xff1a; DQL 基础查询 语法&#xff1a;select 查询列表 from 表名&#xff1a;&#xff08;查询的结果是一个虚拟表格&#xff09; -- 查询指定的列 SELECT NAME,birthday,phone FROM student -- 查询所有的列 * 所有的列&#xff0c; 查询结果是虚拟的表格&am…

Xcode doesn’t support iOS 16.6

xocde版本低&#xff0c;手动放入16.6的依赖文件 https://gitee.com/qiu1993/iOSDeviceSupport/blob/master/iOS16/16.6.zip 路径 /Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/DeviceSupport

harmonyos预览功能报错:[webpack-cli] SyntaxError: Unexpected end of JSON input

harmonyos预览功能报错 在使用DevEco Studio写页面&#xff0c;进行预览的时候报错&#xff1a; [Compile Result] [webpack-cli] SyntaxError: Unexpected end of JSON input [Compile Result] at JSON.parse (<anonymous>) [Compile Result] at updateCached…

【数据结构】——排序篇(下)

前言&#xff1a;前面我们的排序已经详细的讲解了一系列的方法&#xff0c;那么我们现在久之后一个归并排序了&#xff0c;所以我们现在就来讲解一下归并排序。 归并排序&#xff1a; 归并排序&#xff08;MERGE-SORT&#xff09;是建立在归并操作上的一种有效的排序算法,该算法…

ChatGLM3-6B和langchain阿里云部署

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、ChatGLM3-6B部署搭建环境部署GLM3 二、Chatglm2-6blangchain部署三、Tips四、总结 前言 提示&#xff1a;这里可以添加本文要记录的大概内容&#xff1a; …

Matlab数学建模算法之小波神经网络详解

&#x1f517; 运行环境&#xff1a;Matlab &#x1f6a9; 撰写作者&#xff1a;左手の明天 &#x1f947; 精选专栏&#xff1a;《python》 &#x1f525; 推荐专栏&#xff1a;《算法研究》 &#x1f510;#### 防伪水印——左手の明天 ####&#x1f510; &#x1f497; 大家…

【数据结构高阶】红黑树

目录 一、红黑树的概念 二、红黑树的性质 2.1 红黑树与AVL树的比较 三、红黑树的实现 3.1 红黑树节点的定义 3.2 数据的插入 3.2.1 红黑树的调整思路 3.2.1.1 cur为红&#xff0c;f为红&#xff0c;g为黑&#xff0c;u存在且为红 3.2.1.2 cur为红&#xff0c;f为红&am…

【Spring教程20】Spring框架实战:AOP(面对切面编程)知识总结

欢迎大家回到《Java教程之Spring30天快速入门》&#xff0c;本教程所有示例均基于Maven实现&#xff0c;如果您对Maven还很陌生&#xff0c;请移步本人的博文《如何在windows11下安装Maven并配置以及 IDEA配置Maven环境》&#xff0c;本文的上一篇为《利用 AOP通知获取数据代码…

【Linux】进程间通信

目录 一、进程间通信介绍 什么是进程间通信 进程间通信目的 如何实现进程间通信 进程间通信分类 管道 System V IPC POSIX IPC 二、管道 什么是管道 匿名管道 匿名管道的概念 匿名管道的接口 匿名管道的创建 匿名管道读写规则 匿名管道的应用场景 命名管道 创…

linux权限管理以及shell

1.shell 1.1什么是shell? shell即外壳&#xff0c;是运行在linux系统上的一个脚本语言&#xff0c;包裹在linux内核的外面。我们常说的linux操作系统实际上是linux内核。我们使用的所有指令都是一个个程序&#xff0c;而shell指令就是一个将我们用户的操作翻译给linux内核的程…

为 Compose MultiPlatform 添加 C/C++ 支持(1):在 kotlin 中使用 cinterop 实现与 C/C++ 互操作

前言 在安卓中我们可以使用 jvm 提供的 jni 方便的编写 C/C 代码并与 java/kotlin 互操作。 但是当使用 kotlin MultiPlatform 时想要调用 C/C 代码将变得麻烦甚至是不可用&#xff0c;因为对于 Android 和 Desktop 来说依旧使用的是 jvm &#xff0c;所以只要稍微适配一下也…

网络攻击(三)--攻击阶段

5. 威胁建模阶段 目标 了解威胁建模阶段的工作内容 工作内容 威胁建模主要使用在情报搜集阶段所获取到的信息&#xff0c;来标识出目标系统上可能存在的安全漏洞与弱点。 在进行威胁建模时&#xff0c;确定最为高效的攻击方法、所需要进一步获取到的信息&#xff0c;以及从…