论文阅读《Learning Adaptive Dense Event Stereo from the Image Domain》

论文地址:https://openaccess.thecvf.com/content/CVPR2023/html/Cho_Learning_Adaptive_Dense_Event_Stereo_From_the_Image_Domain_CVPR_2023_paper.html


概述

  事件相机在低光照条件下可以稳定工作,然而,基于事件相机的立体方法在域迁移时性能会严重下降。无监督领域自适应作为该问题的一种解决方法,传统的无监督自适应方法依赖于源域的标签值,但源域的视差标签值难以获取。针对该问题,文中提出一种新的无监督域自适应密集时间立体匹配方法(ADES)用于缓解目标域域源域之间的域偏差导致的模型性能下降问题。首先,文中提出一种自监督模块通过图像重建来训练在目标域的模型。与此同时,在源域上训练一个涂抹预测网络协助去除重建图像中的间歇性伪影。使用一个特征的归一化策略来沿着极线对齐匹配特征。最后,使用一个运动不变的一致性模块来在扰动运动之间实现一致性输出。实验结果表明,该模型在从普通图像域到事件相机图像域立体匹配的适应性上得到提升。
在这里插入图片描述


模型架构

  模型主要包含三个部分:涂抹感知自监督模块、特征正则化、运动不变的一致性模块。涂抹感知自监督模块:该模块利用通过图像重建来利用图像的密集特征,从而在目标域的事件相机数据上训练模型。事件相机的数据是一种稀疏的数据表示,它异步地记录像素级的亮度变化信息(事件),而不是以固定的帧率捕获标准的强度图像。因此,只使用事件数据来重建图像时,在物体的边缘容易产生模糊混和失真的伪影,称之为涂抹效应。这种涂抹效应会影响视差预测的精度。为了预测目标域中的涂抹效应,作者在源域的图像数据引入一个模块来估计和抑制重建图像的涂抹效应。此外,作者在构建代价体之间使用特征归一化对匹配特征进行归一化处理。特征归一化化策略常被用于图像模态的域自适应过程中,由于事件相机成像的特殊性(如天空之类的区域事件的稀疏性),对整个像素区域归一化并不高效,传统的归一化方法可能会误导模型偏向于没有事件发生的区域的值。为了减少源域与目标域之间像素的差异,作者沿着极线方向来对特征进行归一化。针对由事件相机运动引起的域偏差,作者提出运动不变一致性模块来预测一致的视差。
在这里插入图片描述
  给定输入源域的图像对 ( I l t − 1 , I r t − 1 ) , ( I l t , I r t ) (I_l^{t-1}, I_r^{t-1}), (I_l^{t}, I_r^{t}) (Ilt1,Irt1),(Ilt,Irt) 与对应的视差标签 d ~ l t \tilde{d}_l^t d~lt,模型的目标是在目标域中从事件流 E l t ^ , E r t ^ E_{l}^{\hat{t}},E_{r}^{\hat{t}} Elt^,Ert^ 预测 t ^ \widehat{t} t 时刻的视差 D l t ^ D_{l}^{\hat{t}} Dlt^(源域与目标域的样本非匹配),使用体素网格来表示事件流(使用 V l t ^ V_l^{\hat{t}} Vlt^ 来代表 E l t ^ E_l^{\hat{t}} Elt^)。
  ADES(Adaptive Dense Event Stereo)主要包含三个模块:涂抹感知自监督模块、特征归一化模块、运动不变一致性模块。在源域,使用一个预训练好的“视频到事件”重建模型( G I → E \mathcal{G}_{I\to E} GIE)来从左右图像序列中提取事件表征: V l t = G I → E ( I l t − 1 , I l t ) , V r t = G I → E ( I r t − 1 , I r t ) . V_l^t=\mathcal{G}_{I\to E}(I_l^{t-1},I_l^t),V_r^t=\mathcal{G}_{I\to E}(I_r^{t-1},I_r^t). Vlt=GIE(Ilt1,Ilt),Vrt=GIE(Irt1,Irt). 将源域生成的体素网格对 ( V l t , V r t ) (V_{l}^{t},V_{r}^{t}) (Vlt,Vrt) 与目标域中的体素网格对 ( V l t ^ , V r t ^ ) (V_l^{\hat{t}},V_r^{\hat{t}}) (Vlt^,Vrt^) 同时送入权值共享的事件流立体匹配模型,在此过程中,作者使用特征归一化来降低域偏差带来的影响。对源域样本对应的视差标签来计算视差损失,使用涂抹感知自监督模块与运动不变一致性模块来对目标域样本的结果计算损失。

Smudge-aware Self-supervision Module (SSM):涂抹感知自监督模块

   该模块旨在使用光度一致性重建的自监督的子任务来提高模型的域自适应能力,如图3下方所示。在这里插入图片描述
  使用一个预训练好的“事件到图像”的网络来将目标域的体素网格映射到图像空间,而在此过程中在图像中的物体边缘会出现模糊,称之为涂抹现象。为此,在目标域训练一个涂抹感知自监督模块来预测涂抹的区域。
  在源域中,如图3上方所示,作者通过随机扭曲域模糊对图像进行增强来模拟涂抹效应的影响。为了模拟由传感器噪声在物体边缘产生的涂抹影响,作者使用超像素算法来解析区域而不是随机选取的矩形区域进行模糊增强 (因为超像素的边缘通常位于物体的边界上,从而更好地反映了由于传感器噪声而在物体边界处产生的涂抹效果)。继而使用一个轻量化的U-Net来预测预测涂抹区域,并使用二元交叉熵损失来计算损失: L s o u r c e m a s k = ∑ i ∈ { l , r } B C E ( M i t , M ~ i t ) . \mathcal{L}_{source}^{mask}=\sum_{i\in\{l,r\}}BCE(M_{i}^{t},\tilde{M}_{i}^{t}). Lsourcemask=i{l,r}BCE(Mit,M~it).
  在目标域,如图3下方所示,作者使用权值共享的涂抹区域预测网络来从重建图像 I ^ l t ^ , I ^ r t ^ \hat{I}_{l}^{\hat{t}},\hat{I}_{r}^{\hat{t}} I^lt^,I^rt^ 预测涂抹区域 M l t ^ , M r t ^ ∈ [ 0 , 1 ] M_{l}^{\hat{t}},M_{r}^{\hat{t}}\in[0,1] Mlt^,Mrt^[0,1],将 I ^ r t ^ \hat{I}_{r}^{\hat{t}} I^rt^ 根据目标域预测的视差图 D l t ^ D_{l}^{\hat{t}} Dlt^来warp到左视图得到 W ˉ r → l ( I ^ r t ^ ) \bar{W}_{r\to l}(\hat{I}_r^{\hat{t}}) Wˉrl(I^rt^)。考虑到左右驶入的涂抹mask图像,光度一致性误差定义为:
L t a r g e t r e c o n = α 1 − SSIM ( I ^ l t ^ ⊙ M t ^ , W r → l ( I ^ r t ^ ) ⊙ M t ^ ) 2 + ( 1 − α ) ∥ I ^ l t ^ ⊙ M t ^ − W r → l ( I ^ r t ^ ) ⊙ M t ^ ∥ 1 , (1) \begin{aligned} \mathcal{L}_{target}^{recon}& =\alpha\frac{1-\text{SSIM}(\hat{I}_{l}^{\hat{t}}\odot M^{\hat{t}},W_{r\to l}(\hat{I}_{r}^{\hat{t}})\odot M^{\hat{t}})}{2} +(1-\alpha)\|\hat{I}_{l}^{\hat{t}}\odot M^{\hat{t}}-W_{r\to l}(\hat{I}_{r}^{\hat{t}})\odot M^{\hat{t}}\|_{1}, \end{aligned}\tag{1} Ltargetrecon=α21SSIM(I^lt^Mt^,Wrl(I^rt^)Mt^)+(1α)I^lt^Mt^Wrl(I^rt^)Mt^1,(1)
其中, M t ^ = 1 − ( M l t ^ ⊙ W r → l ( M r t ^ ) ) , \begin{aligned}M^{\hat{t}}=1-(M_{l}^{\hat{t}}\odot W_{r\to l}(M_{r}^{\hat{t}})),\end{aligned} Mt^=1(Mlt^Wrl(Mrt^)), ⊙ \odot 表示逐元素相乘。SSIM 表示结构一致性损失, α = 0.85 \alpha=0.85 α=0.85

Feature Normalization 特征归一化

  为了减小源域与目标域之间的域偏差,作者使用了特征级归一化方法来对特征增强。但考虑到不同区域事件的稀疏性(在图像上方的天空区域事件较少,而在图像下方的建筑的事件较多)以及极线校正图像的特殊性,作者只沿着极线方向在事件发生的区域进行特征归一化,先沿着通道维度进行归一化:
F ( k , i , j ) = F ( k , i , j ) ∑ c = 0 C − 1 ∥ F ( c , i , j ) ∥ 2 + ε ⋅ (2) F(k,i,j)=\frac{F(k,i,j)}{\sqrt{\sum_{c=0}^{C-1}\left\|F(c,i,j)\right\|^2+\varepsilon}}\cdotp \tag{2} F(k,i,j)=c=0C1F(c,i,j)2+ε F(k,i,j)(2)
继而沿着极线方向归一化:
F ( k , i , j ) = F ( k , i , j ) ∑ w = 0 W − 1 ∥ F ( k , i , w ) ∥ 2 + ε . (3) \begin{aligned}F(k,i,j)&=\frac{F(k,i,j)}{\sqrt{\sum_{w=0}^{W-1}\left\|F(k,i,w)\right\|^2+\varepsilon}}.\end{aligned}\tag{3} F(k,i,j)=w=0W1F(k,i,w)2+ε F(k,i,j).(3)

Motion-invariant Consistency Module (MCM) 运动不变的一致性模块

   该模块旨在解决由不同相机运动引起的域偏差和增强模型对扰动与噪声的鲁棒性。将 T T T 时间内累积的事件 V l t ^ , T , V r t ^ , T V_l^{\hat{t},T},V_r^{\hat{t},T} Vlt^,T,Vrt^,T 送入视差预测模型中得到视差图 D l t ^ . D_{l}^{\hat{t}}. Dlt^. 由于现有的数据集中运动是固定且无法改变的,作者引入一个时间扰动参数 τ \tau τ 来增强快事件流。若事件数据在 T + τ T+\tau T+τ 时间内积累,将其沿着时间通道归一化到0-1,并转换为体素网格后可以模仿快速运动中的事物的事件体素网格。若事件数据在 T − τ T-\tau Tτ 时间内积累,则与慢速运动产生的体素网格相同,如图5所示:
在这里插入图片描述
   将 V l t ^ , T ^ , V r t ^ , T ^ V_l^{\hat{t},\hat{T}},V_r^{\hat{t},\hat{T}} Vlt^,T^,Vrt^,T^ 送入事件立体匹配模型中得到视差图 D ~ l t ^ . \tilde{D}_l^{\hat{t}}. D~lt^.,使用 L 1 L_1 L1 损失来约束增强前后生成的视差图:

L t a r g e t c o n s i s t e n c y = ∥ D l t ^ − D ~ l t ^ ∥ 1 (4) \mathcal{L}_{target}^{consistency}=\|D_l^{\hat{t}}-\tilde{D}_l^{\hat{t}}\|_1\tag{4} Ltargetconsistency=Dlt^D~lt^1(4)


损失函数

   在源域,使用平滑 L 1 L1 L1 损失来约束视差估计模型: L s o u r c e t a s k = smooth L 1 ( d ~ l t − d l t ) \mathcal{L}_{source}^{task}=\text{ smooth}_{L_1}(\tilde{d}_l^t-d_l^t) Lsourcetask= smoothL1(d~ltdlt), 使用二元交叉熵损失来约束涂抹区域: L s o u r c e m a s k = ∑ i ∈ { l , r } B C E ( M i t , M ~ i t ) . \mathcal{L}_{source}^{mask}=\sum_{i\in\{l,r\}}BCE(M_{i}^{t},\tilde{M}_{i}^{t}). Lsourcemask=i{l,r}BCE(Mit,M~it).

  
L t o t a l = L s o u r c e t a s k + λ 1 L s o u r c e m a s k + λ 2 L t a r g e t r e c o n + λ 3 L t a r g e t c o n s i s t e n c y , \begin{aligned}\mathcal{L}^{total}=\mathcal{L}_{source}^{task}+\lambda_1\mathcal{L}_{source}^{mask}+\lambda_2\mathcal{L}_{target}^{recon}+\lambda_3\mathcal{L}_{target}^{consistency},\end{aligned} Ltotal=Lsourcetask+λ1Lsourcemask+λ2Ltargetrecon+λ3Ltargetconsistency,


实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/215725.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【头歌系统数据库实验】实验9 SQL视图

目录 第1关:请为三建工程项目建立一个供应情况的视图V_SPQ,包括供应商代码(SNO)、零件代码(PNO)、供应数量(QTY) 第2关:从视图V_SPQ找出三建工程项目使用的各种零件代码及其数量 第3关:从视图V_SPQ找出供应商S1的供应情况 第4…

事业单位选岗技巧

事业单位选岗技巧 下面这些都是不需要笔试直接面试的岗位,一定不要被自己限制的条件所卡死了,一定要灵活,一定要放的开

C++STL库的 deque、stack、queue、list、set/multiset、map/multimap

deque 容器 Vector 容器是单向开口的连续内存空间, deque 则是一种双向开口的连续线性空 间。所谓的双向开口,意思是可以在头尾两端分别做元素的插入和删除操作,当然, vector 容器也可以在头尾两端插入元素,但是在其…

三防平板|手持终端PDA|8寸/10寸工业三防平板电脑主板方案定制

近年来,随着科技的快速发展,三防平板成为了各行各业中不可或缺的工具。三防平板采用IP67级别的防护设计,通过了多项测试标准,如国标和美标,具备防水、防摔、防尘、防撞、防震、防跌落以及防盐雾等多重防护功能。因此&a…

ARM:作业3

按键中断代码编写 代码: key_it.h #ifndef __KEY_IT_H__ #define __KEY_IT_H__#include "stm32mp1xx_gpio.h" #include "stm32mp1xx_exti.h" #include "stm32mp1xx_rcc.h" #include "stm32mp1xx_gic.h"void key1_it_config(); voi…

vxe-table 右键菜单+权限控制(v3)

1.menu-config 是用于配置右键菜单的属性。通过 menu-config 属性,定义右键菜单的内容、显示方式和样式。 通过 menu-config 属性配置了右键菜单,其中的 options 属性定义了右键菜单的选项。用户在表格中右键点击时,将会弹出包含这些选项的自…

练练手之“四环”“磁铁”(svg)

文本是闲暇之余练习svg的运用的产物&#xff0c;记录以备有需。 <svg xmlns"http://www.w3.org/2000/svg" viewBox"0 0 500 500" width"500px" height"500px"><path d"M150,100 A50,50 0 1,1 150,99.999" stroke&q…

【数据结构(九)】顺序存储二叉树(2)

文章目录 1. 相关概念2. 顺序存储二叉树的遍历 1. 相关概念 从数据存储来看&#xff0c;数组存储方式和树的存储方式可以相互转换&#xff0c;即数组可以转换成树&#xff0c;树也可以转换成数组&#xff0c;看右面的示意图。 转换原则:     1.上图的二叉树的结点&#xff…

【深度学习】注意力机制(五)

本文介绍一些注意力机制的实现&#xff0c;包括CSRA/Spatial Shift/Triplet Attention/Coordinate Attention/ACmix。 【深度学习】注意力机制&#xff08;一&#xff09; 【深度学习】注意力机制&#xff08;二&#xff09; 【深度学习】注意力机制&#xff08;三&#xff…

python 实现 AIGC 大模型中的概率论:生日问题的基本推导

在上一节中&#xff0c;我们对生日问题进行了严谨的阐述&#xff1a;假设屋子里面每个人的生日相互独立&#xff0c;而且等可能的出现在一年 365 天中的任何一天&#xff0c;试问我们需要多少人才能让某两个人的生日在同一天的概率超过 50%。 处理抽象逻辑问题的一个入手点就是…

centos 7.9 二进制部署 kubernetes v1.27.7

文章目录 1. 预备条件2. 基础配置2.1 配置root远程登录2.2 配置主机名2.3 安装 ansible2.4 配置互信2.5 配置hosts文件2.6 关闭防firewalld火墙2.7 关闭 selinux2.8 关闭交换分区swap2.9 修改内核参数2.10 安装iptables2.11 开启ipvs2.12 配置limits参数2.13 配置 yum2.14 配置…

css实现姓名两端对齐

1.1 效果 1.2 主要代码 text-align-last: justify; 1.3 html完整代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0&quo…

【LeetCode刷题-树】-- 116.填充每个节点的下一个右侧节点指针

116.填充每个节点的下一个右侧节点指针 方法&#xff1a;层次遍历 /* // Definition for a Node. class Node {public int val;public Node left;public Node right;public Node next;public Node() {}public Node(int _val) {val _val;}public Node(int _val, Node _left, N…

MeterSphere实战(一)

MeterSphere是一位朋友讲到的测试平台&#xff0c;说这东西是开源的&#xff0c;因为我是做测试的&#xff0c;很乐意了解一些新鲜事物。在我看来&#xff0c;测试就是要专注一些领域&#xff0c;然后要啥都会一点点&#xff0c;接着融会贯通起来&#xff0c;这样就可以万变不离…

RCNN 学习

RCNN算法流程 RCNN算法流程可分为4个步骤 一张图像生成1K~2K个候选区域&#xff08;使用Selective Search方法&#xff09;对每个候选区域&#xff0c;使用深度网络图特征特征送入每一类的SVM分类器&#xff0c;判别是否属于该类使用回归期器细修正候选框位置 1.候选区域的生…

漏洞复现-泛微云桥 e-Bridge SQL注入(附漏洞检测脚本)

免责声明 文章中涉及的漏洞均已修复&#xff0c;敏感信息均已做打码处理&#xff0c;文章仅做经验分享用途&#xff0c;切勿当真&#xff0c;未授权的攻击属于非法行为&#xff01;文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直接或者间接的…

C51单片机中reentrant关键字的使用,关于MULTIPLE CALL TO FUNCTION警告的问题

关于可重入关键字reentrant的使用&#xff1a; 现象&#xff1a; 在一个项目中警告信息如下&#xff0c;提示该函数多次调用&#xff0c;因为该函数在串口中断和主循环中都有被调用。 影响&#xff1a; 如果在使用该函数期间被中断打断&#xff0c;而中断也调用了该函数&a…

文件管理和操作工具Path Finder mac功能介绍

Path Finder mac是一款Mac平台上的文件管理和操作工具&#xff0c;提供了比Finder更丰富的功能和更直观的用户界面。它可以帮助用户更高效地浏览、复制、移动、删除和管理文件&#xff0c;以及进行各种高级操作。 Path Finder mac软件功能 - 文件浏览&#xff1a;可以快速浏览文…

node.js和npm的安装与环境配置(2023最新版)

目录 安装node.js测试是否安装成功测试npm环境配置更改环境变量新建系统变量 安装node.js 1、进入官网下载&#xff1a;node.js官网 我选择的是windows64位的&#xff0c;你可以根据自己的实际情况选择对应的版本。 2、下载完成&#xff0c;安装。 打开安装程序 接受协议 选…

学习-面试java基础-(集合)

String 为什么不可变&#xff1f; 1线程安全 2支持hash映射和缓存。因为String的hash值经常会使用到&#xff0c;比如作为 Map 的键&#xff0c;不可变的特性使得 hash 值也不会变&#xff0c;不需要重新计算。 3出于安全考虑。网络地址URL、文件路径path、密码通常情况下都是以…