Python应用算法之贪心算法理解和实践

一、什么是贪心算法?

贪心算法(Greedy Algorithm)是一种简单而高效的算法设计思想,其核心思想是:在每一步选择中,都采取当前状态下最优的选择(即“局部最优解”),希望通过一系列局部最优解最终达到全局最优解。虽然贪心算法并不总是能得到全局最优解,但在许多问题中,它能够快速找到近似最优解。

1. 贪心算法的优缺点

优点

  • 高效性:通常时间复杂度较低,适合解决大规模问题。
  • 简单性:实现简单,易于理解和应用。
  • 实用性:在许多实际问题中(如调度、路径规划等),贪心算法能快速找到近似最优解。

缺点

  • 局限性:贪心算法并不总是能得到全局最优解。
  • 适用范围有限:需要满足贪心选择性质和最优子结构性质。

2. 贪心算法的适用场景

贪心算法适用于满足以下条件的问题:

  • 贪心选择性质:可以通过局部最优选择逐步构造全局最优解。
  • 最优子结构:问题的最优解可以通过子问题的最优解构造。
  • 如果不满足上述条件,贪心算法可能无法得到正确结果。例如,在某些情况下,动态规划可能是更好的选择。

二、贪心算法经典问题与解法

1. 贪心算法的核心思想

贪心算法的特点可以总结为以下几点:
(1)局部最优选择
在每一步决策时,选择当前看起来最优的选项。
不考虑未来的后果,也不回溯之前的决策。
(2)无后效性
一旦做出某个选择,就不会再改变。
每一步的决策只依赖于当前状态,而不依赖于之前的状态。
(3)贪心选择性质
全局最优解可以通过一系列局部最优选择来构造。
(4)最优子结构性质
问题的最优解包含其子问题的最优解。

2. 经典贪心算法示例

2.1 活动选择问题

问题描述:
给定一组活动,每个活动有开始时间和结束时间,要求选择尽可能多的互不冲突的活动。
算法描述:
按活动的结束时间排序。
每次选择最早结束的活动,并排除与之冲突的活动。
代码实现:

def activity_selection(start, finish):# 按结束时间排序activities = sorted(zip(start, finish), key=lambda x: x[1])selected = []last_finish_time = -1for start_time, finish_time in activities:if start_time >= last_finish_time:  # 如果活动不冲突selected.append((start_time, finish_time))last_finish_time = finish_timereturn selected# 调用函数
start_times = [1, 3, 0, 5, 8, 5]
finish_times = [2, 4, 6, 7, 9, 9]
print("Selected activities:", activity_selection(start_times, finish_times))

2.2 分数背包问题(Fractional Knapsack Problem)

问题描述:
给定一组物品,每个物品有重量和价值,要求在不超过背包容量的情况下,最大化总价值。允许将物品分割。
算法描述:
计算每个物品的单位价值(价值/重量)。
按单位价值从高到低排序。
尽量装入单位价值最高的物品,直到背包装满。
代码实现:

def fractional_knapsack(weights, values, capacity):# 计算单位价值并排序items = sorted([(v / w, w, v) for v, w in zip(values, weights)],key=lambda x: x[0],reverse=True)total_value = 0for value_per_weight, weight, value in items:if capacity >= weight:total_value += valuecapacity -= weightelse:total_value += value_per_weight * capacitybreakreturn total_value# 调用函数
weights = [10, 20, 30]
values = [60, 100, 120]
capacity = 50
print("Maximum value:", fractional_knapsack(weights, values, capacity))

3. 贪心算法刷力扣题

3.1 无重叠区间(LeetCode原题435题)

问题描述
给定一个区间的集合 intervals,其中 intervals[i] = [start_i, end_i],返回需要移除的最小区间数量,使得剩余区间互不重叠。
解题思路:
按区间的结束时间排序。
每次选择最早结束的区间,并移除与之重叠的区间。
代码实现:

def eraseOverlapIntervals(intervals):if not intervals:return 0intervals.sort(key=lambda x: x[1])  # 按结束时间排序count = 0end = intervals[0][1]for i in range(1, len(intervals)):if intervals[i][0] < end:  # 当前区间与前一个区间重叠count += 1else:end = intervals[i][1]  # 更新结束时间return count
# 调用函数
intervals = [[1, 2], [2, 3], [3, 4], [1, 3]]
print(eraseOverlapIntervals(intervals))  
# 输出: 1

3.2 跳跃游戏(LeetCode 原题55题)

问题描述:
给定一个非负整数数组 nums,你最初位于数组的第一个位置。数组中的每个元素代表你在该位置可以跳跃的最大长度。判断你是否能够到达最后一个位置。
解题思路:
维护一个变量 max_reach 表示当前能到达的最远位置。
遍历数组时,更新 max_reach,如果当前位置超过了 max_reach,则无法到达终点。
代码实现:

def canJump(nums):max_reach = 0for i, jump in enumerate(nums):if i > max_reach:  # 当前位置不可达return Falsemax_reach = max(max_reach, i + jump)return max_reach >= len(nums) - 1# 调用函数
nums = [2, 3, 1, 1, 4]
print(canJump(nums))  
# 输出: True

4. 优化方法

4.1 数据预处理

(1)排序
贪心算法通常依赖于某种顺序(如活动的结束时间、物品的单位价值等),因此对数据进行适当的排序是关键。
使用高效的排序算法(如快速排序或归并排序)可以减少预处理的时间开销。
(2)去重或过滤
在某些情况下,可以通过去重或过滤无效数据来减少计算量。

4.2 使用优先队列优化选择过程

当需要动态选择当前最优元素时,可以使用优先队列(如最小堆或最大堆)来加速选择过程。

4.3 并行化与分布式计算

对于独立的子问题,可以使用多线程或多进程并行处理。

4.4 近似算法优化

(1)放松约束条件
在某些情况下,可以通过放松约束条件来简化问题,从而使贪心算法更高效。
例如,在分数背包问题中,允许分割物品可以显著简化问题。
(2)局部搜索优化
在贪心算法的基础上,可以通过局部搜索(如交换相邻元素)进一步优化结果。
示例:任务调度问题
使用贪心算法生成初始调度方案后,通过交换任务顺序来减少总完成时间。

三、总结

贪心算法,名思义,总是做出当前的最优选择,即期望通过局部的最优选择获得整体的最优选择。
某种意义上说,贪心算法是很贪婪、很目光短浅的,它不从整体考虑,仅仅只关注当前的最大利益,所以说它做出的选择仅仅是某种意义上的局部最优,但是贪心算法在很多问题上还是能够拿到最优解或较优解。

1. 注意事项

(1)适用条件:问题需满足贪心选择性质(局部最优可推导全局最优)和最优子结构。例如,分数背包满足贪心性质,而0-1背包不满足。
(2)验证必要性:贪心策略的正确性需通过数学归纳法或反证法严格证明。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/21782.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

边缘安全加速(Edge Security Acceleration)

边缘安全加速&#xff08;Edge Security Acceleration&#xff0c;简称ESA&#xff09;是一种通过将安全功能与网络边缘紧密结合来提升安全性和加速网络流量的技术。ESA的目标是将安全措施部署到接近用户或设备的地方&#xff0c;通常是在网络的边缘&#xff0c;而不是将所有流…

图表控件Aspose.Diagram入门教程:使用 Python 将 VSDX 转换为 PDF

将VSDX转换为PDF可让用户轻松共享图表。PDF 文件保留原始文档的布局和设计。它们广泛用于演示文稿、报告和文档。在这篇博文中&#xff0c;我们将探讨如何在 Python 中将 VSDX 转换为 PDF。 本文涵盖以下主题&#xff1a; Python VSDX 到 PDF 转换器库使用 Python 将 VSDX 转…

两相四线步进电机的步距角为什么是1.8度

机缘 在CSDN查了好多文章&#xff0c;发现都是用公式来解释1.8的步距角&#xff08;Q&#xff1d;360&#xff0f;MZ&#xff09;&#xff0c;因为转子是50齿&#xff0c;4拍一个循环&#xff0c;所以θ360度/&#xff08;50x4&#xff09;1.8度。估计第一次接触步进电机的什么…

Helix——Figure 02发布通用人形机器人控制的VLA:一组神经网络权重下的快与慢双系统,让两个机器人协作干活

前言 过去一周&#xff0c;我花了很大的心思、力气&#xff0c;把deepseek的GRPO、MLA算法的代码解析通透&#xff0c;比如GRPO与PPO的详细对比&#xff0c;再比如MLA中&#xff0c;图片 公式 代码的一一对应 2.20日晚&#xff0c;无意中刷到figure 02发布Helix的一个演示视频…

Unity游戏制作中的C#基础(2)变量与数据类型

1.变量 &#xff08;1&#xff09;变量的定义&#xff1a;变量是用于存储数据的容器。 &#xff08;2&#xff09;变量的作用&#xff1a;在程序运行过程中&#xff0c;我们可以将各种类型的数据存储在变量中&#xff0c;方便后续使用和操作。 &#xff08;3&#xff09;变量…

革新之力:数字科技——重塑未来的超越想象之旅

在21世纪的科技浪潮中&#xff0c;数字科技如同一股不可阻挡的洪流&#xff0c;正以前所未有的速度和广度改变着我们的生活、工作乃至整个社会的结构。它不仅是技术的简单迭代&#xff0c;更是对人类社会认知边界的拓宽&#xff0c;对经济模式、社会治理、文化形态等多方面的深…

python pandas下载

pandas pandas:就是一个可以处理数据的 python 库 核心功能&#xff1a; 数据的清洗&#xff1a;处理丢失值&#xff0c;重复值数据分析&#xff1a;计算和统计信息&#xff0c;或分组汇总数据可视化&#xff1a;结合 图标库&#xff08;Matplotlib&#xff09;完成数据可视化…

将Google文档导入WordPress:简单实用的几种方法

Google文档是内容创作者非常实用的写作工具。它支持在线编辑、多人协作&#xff0c;并能够自动保存内容。但当我们想把Google文档中的内容导入WordPress网站时&#xff0c;可能会遇到一些小麻烦&#xff0c;比如格式错乱、图片丢失等问题。本文将为大家介绍几种简单实用的方法&…

java面试场景问题

还在补充&#xff0c;这几天工作忙&#xff0c;闲了会把答案附上去&#xff0c;也欢迎各位大佬评论区讨论 1.不用分布式锁如何防重复提交 方法 1&#xff1a;基于唯一请求 ID&#xff08;幂等 Token&#xff09; 思路&#xff1a;前端生成 一个唯一的 requestId&#xff08;…

【笔记ing】C语言补充、组成原理数据表示与汇编实战、操作系统文件实战(高级阶段)

【第19节 C语言语法进阶】 【19.1 条件运算符与逗号运算符】 1 条件运算符 条件运算符是C语言中唯一的一种三亩运算符。三目运算符代表有三个操作数&#xff1b;双目运算符代表有两个操作数&#xff0c;如逻辑运算符就是双目运算符&#xff1b;弹幕运算符代表有一个操作数&a…

GAMES101-现代计算机图形学入门笔记

主讲老师&#xff1a;闫令琪&#xff0c;此处仅做个人笔记使用。如果我的分享对你有帮助&#xff0c;请记得点赞关注不迷路。 课程链接如下&#xff1a;GAMES101-现代计算机图形学入门-闫令琪_哔哩哔哩_bilibili 课程分为四部分&#xff1a;光栅化、几何、光线追踪、模拟 图形…

激光工控机在自动化生产线中有什么关键作用?

激光工控机作为自动化生产线的核心设备&#xff0c;通过高精度控制、快速响应和智能化集成&#xff0c;在提升效率、保障质量、实现柔性制造等方面发挥着不可替代的作用。以下是其关键作用的具体分析&#xff1a; 一、实现高效连续生产&#xff1a; 1.高速加工能力&#xff1…

高等数学(上)题型笔记(六)定积分的应用

目录 1 三角函数定积分的结论 2 定积分的微元法&#xff08;元素法&#xff09; 2.1 使用条件 2.2 使用步骤 3 定积分的几何应用 3.1 平面图形的面积 3.1.1 直角坐标系的情形 3.1.1.1 X型 3.1.1.2 Y型 3.1.1.3 双型 3.1.1.4 复合&#xff1a;分割型 3.1.1.5 引入参…

QT项目——天气预报

文章目录 前言一、项目介绍二、项目基础知识1. 软件开发网络通信架构1.1 CS架构 / BS架构1.1.1 CS架构&#xff08;客户端-服务器架构&#xff09;1.1.2 BS架构&#xff08;浏览器-服务器架构&#xff09; 1.2 HTTP 基本概念 2. QT 下 HTTP 编程2.1 类的解析2.2 示例程序 3. JS…

最优化方法-牛顿法

牛顿法 泰勒级数 泰勒级数展开 $$ \begin{aligned} f(x)&\lim\limits_{n\rightarrow \infin}\sum\limits_{i1}n\frac{1}{n!}f{(n)}(x_0)(x-x_0)^n\ &f(x_0)f’(x_0)(x-x_0)\frac{f’(x_0)}{2!}(x-x_0)2\cdots\frac{1}{n!}fn(x_0)(x-x_0)^n\ &\quad~ O\left[(x-x_…

论文笔记(七十二)Reward Centering(二)

Reward Centering&#xff08;二&#xff09; 文章概括摘要2 简单的奖励中心 文章概括 引用&#xff1a; article{naik2024reward,title{Reward Centering},author{Naik, Abhishek and Wan, Yi and Tomar, Manan and Sutton, Richard S},journal{arXiv preprint arXiv:2405.0…

halcon机器视觉深度学习对象检测,物体检测

目录 效果图操作步骤软件版本halcon参考代码本地函数 get_distinct_colors()本地函数 make_neighboring_colors_distinguishable() 效果图 操作步骤 首先要在Deep Learning Tool工具里面把图片打上标注文本&#xff0c; 然后训练模型&#xff0c;导出模型文件 这个是模型 mod…

MySQL修改JSON格式数据示例

最近发现有个数据是用JSON格式直接存到表格里面的&#xff0c;大概就是下面这样的 然后需要修改里面某个属性的值&#xff0c;一开始我想的是 REPLACE 替换 UPDATE test_1 SET content REPLACE(content, {"age": 15, "name": "w5"}, {"ag…

第4章 信息系统架构(二)

4.2 系统架构 信息系统架构是一种体系结构&#xff0c;它反映了一个组织信息系统的各个组成部分之间的关系&#xff0c;以及信息系统与相关业务、信息系统与相关技术之间的关系。 4.2.1 架构定义 对于大规模的复杂系统来说&#xff0c;对总体的系统结构设计比起对计算算法和…

AI 时代:探索大语言模型与核心技术

引言 在当今科技快速发展的时代&#xff0c;人工智能&#xff08;AI&#xff09;正成为推动创新和变革的重要力量。从能够理解和生成自然语言的大语言模型&#xff08;LLM&#xff09;&#xff0c;到具有自我学习能力的生成式预训练转换器&#xff08;GPT&#xff09;&#xf…