智能优化算法应用:基于浣熊算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于浣熊算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于浣熊算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.浣熊算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用浣熊算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.浣熊算法

浣熊算法原理请参考:https://blog.csdn.net/u011835903/article/details/130538719
浣熊算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

浣熊算法参数如下:

%% 设定浣熊优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明浣熊算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/225597.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【python与机器学习3】感知机和门电路:与门,或门,非门等

目录 1 电子和程序里的与门,非门,或门,与非门 ,或非门,异或门 1.1 基础电路 1.2 所有的电路情况 1.3 电路的符号 1.4 各种电路对应的实际电路图 2 各种具体的电路 2.1 与门(and gate) 2…

什么是数据分析思维

参考 一文学会如何做电商数据分析(附运营分析指标框架) 电子商务该如何做数据分析?如何数据分析入门(从各项指标表象进入) https://www.processon.com/outline/6589838c3129f1550cc69950 数据分析步骤 什么是数据分析…

2024年元旦节放假通知

致尊敬的客户以及全体同仁: 旧岁已展千重锦,新年再进百尺竿。在这辞旧迎新之际,易天光通信提前祝您元旦快乐!生意兴隆,身体健康,万事如意!根据国家法定假期的规定,并结合公司实际情…

Elasticsearch8.x结合OpenAI CLIP模型实现图搜图及文搜图功能

前言 在当今大数据时代,搜索引擎已经是许多应用的核心组件之一,近年随着大模型以及AI技术(如:自然语言处理NLP)的流行,这些技术的结合将会创造出更多的应用场景,比如:电商商品搜索、…

centos 安装oracle 11.2.04 并配置数据库自启动操作记录,一次完成

环境: centos版本7.3,安装的有图形化界面 Oracle11.2.04,之所以选择这个版本是因为网上有人说11其他版本的在安装的过程中会出现这样或那样的问题,下载地址放到文章下面 步骤,按顺序: 1、创建安装Oracle…

nginx反向代理服务器及负载均衡服务配置

一、正向代理与反向代理 正向代理:是一个位于客户端和原始服务器(oricin server)之间的服务器,为了从原始服务器取得内容,客户端向代理发送一个请求并指定目标(原始服务器),然后代理向原始服务器转交请求并将获得的内容返回给客户…

Tauri:构建高效安全的桌面应用程序 | 开源日报 No.124

tauri-apps/tauri Stars: 64.6k License: Apache-2.0 Tauri 是一个开源项目,它可以通过 Web 前端构建更小、更快和更安全的桌面应用程序。 该项目具有以下优势和特点: Tauri 可以帮助用户构建桌面应用程序,并使用 web 前端技术进行界面设计…

Bug:Too many open files【ulimit限制】

Bug:Too many open files 今天在开发某个下载功能时,发现文件总是下载到250多个程序就挂掉,同时会打崩服务器,查看错误日志发现报:too many open files. 思路:根据错误信息可以知道打开的文件数过多&#x…

k8s的二进制部署

k8s的二进制部署:源码包部署 k8smaster01: 20.0.0.101 kube-apiserver kube-controller-manager kube-scheduler etcd k8smaster02: 20.0.0.102 kube-apiserver kube-controller-manager kube-scheduler node节点01: 20.0.0.103 kubelet kube-proxy etcd node节点02…

2024 年 11 款最佳 Android 数据恢复软件应用

Android 设备上的数据丢失可能是一种令人痛苦的经历,通常会导致不可替代的信息瞬间消失。 意外删除、系统崩溃或格式错误都可能发生,重要数据的丢失可能会扰乱日常工作并影响您的工作效率。 幸运的是,技术进步带来了多种恢复解决方案&…

微信小程序预览pdf,修改pdf文件名

记录微信小程序预览pdf文件,修改pdf名字安卓和ios都可用。 1.安卓和苹果的效果 2.需要用到的api 1.wx.downloadFile wx.downloadFile 下载文件资源到本地。客户端直接发起一个 HTTPS GET 请求,返回文件的本地临时路径 (本地路径),单次下载…

数据结构:图文详解 树与二叉树(树与二叉树的概念和性质,存储,遍历)

目录 一.树的概念 二.树中重要的概念 三.二叉树的概念 满二叉树 完全二叉树 四.二叉树的性质 五.二叉树的存储 六.二叉树的遍历 前序遍历 中序遍历 后序遍历 一.树的概念 树是一种非线性数据结构,它由节点和边组成。树的每个节点可以有零个或多个子节点…

深圳鼎信|输电线路防山火视频监控预警装置:森林火灾来袭,安全不留白!

受线路走廊制约和环保要求影响,输电线路大多建立在高山上,不仅可以减少地面障碍物和人类活动的干扰,还能提高线路的抗灾能力和可靠性。但同时也会面临其它的难题,例如森林火灾预防。今天,深圳鼎信智慧将从不同角度分析…

基于AR+地图导航的景区智慧导览设计

随着科技的飞速发展,智慧旅游已经成为现代旅游业的一个重要趋势。在这个背景下,景区智慧导览作为智慧旅游的核心组成部分,正逐渐受到越来越多游客的青睐。本文将深入探讨地图导航软件在景区智慧导览中的应用,并分析其为游客和景区…

Vue-Pinina基本教程

前言 官网地址:Pinia | The intuitive store for Vue.js (vuejs.org) 看以下内容,需要有vuex的基础,下面很多概念会直接省略,比如state、actions、getters用处含义等 1、什么是Pinina Pinia 是 Vue 的存储库,它允许您跨…

Graylog日志搜索技巧

graylog搜索日志用的语法是Syntax接近Lucene,搜起来比较方便 Search query languagehttps://go2docs.graylog.org/4-0/making_sense_of_your_log_data/writing_search_queries.html?tocpathSearching%20Your%20Log%20Data|_____1 1.Syntax 语法 1.1 基本匹配 搜…

Hive04_DDL操作

Hive DDL操作 1 DDL 数据定义 1.1 创建数据库 CREATE DATABASE [IF NOT EXISTS] database_name [COMMENT database_comment] [LOCATION hdfs_path] [WITH DBPROPERTIES (property_nameproperty_value, ...)];[IF NOT EXISTS] :判断是否存在 [COMMENT database_c…

【C语言】指针详解(四)

目录 1.assert断言 2.指针的使用和传址调用 2.1strlen的模拟使用 2.2传值调用和传址调用 1.assert断言 assert.h头文件定义了宏 assert(),用于在运行时确保程序符合指定条件,如果不符合,就报错终止运行。这个宏常常被称为“断言”。 例如…

系列十五(面试)、RocketMQ消息重复消费问题

一、RocketMQ消息重复消费问题 1.1、官网 1.2、消息重复被消费原因 通过上述官网的描述我们可以知道,RocketMQ中的消息是存在重复消费的情况的。那么消息为什么会被重复消费呢?先来回顾一下RocketMQ的消息是怎么发送和接收的: 从上图可以看出…

TYPE C 接口知识

1、Type C 概述 Type-C口有4对TX/RX分线,2对USBD/D-,一对SBU,2个CC,另外还有4个VBUS和4个地线。 当Type-C接口仅用作传输DP信号时,则可利用4对TX/RX,从而实现4Lane传输,这种模式称为DPonly模式…