2023年12月28日学习记录

目录

  • 1、今日计划学习内容
  • 2、今日学习内容
    • 文献阅读—A Data-driven Base Station Sleeping Strategy Based on Traffic Prediction
      • 0、选这篇文章的原因
      • 1、文章的主要内容和贡献
      • 2、使用的数据集
      • 3、结果及分析
      • 4、郭郭有话说
    • 整理流量预测的代码
  • 3、今日学习总结

1、今日计划学习内容

  • 读一篇文献,要有个人思考
  • 整理一下流量预测的代码资源
  • 学习时不玩手机 🤡

开始今日学习👍
在这里插入图片描述

2、今日学习内容

文献阅读—A Data-driven Base Station Sleeping Strategy Based on Traffic Prediction

0、选这篇文章的原因

在我读的综述文献里面指出了cellular traffic prediction 的显著应用就是设计sleeping strategies for BSs。当基站的流量需求比较低的时候,部分基站可以关闭或者可以在保证用户的服务质量的同时使用low-function 状态来节约能量。我想看看具体的研究是怎么做的。

1、文章的主要内容和贡献

  • 首先提出了时空小区流量预测模型:使用multi-graph convolutional network(MGCN)来提取空间特征,使用multi-channel LSTM提取时间特征。

  • 对MBS和SBS进行建模,使用clustering(?)和transfer learning 来衡量MBS和SBS的容量(我的理解是他是不是把基站进行了聚类,不同的基站能够提供的容量不同,往下看

    • 问:为什么要对基站的容量进行建模?因为原始数据集不提供。
    • 问:聚类的依据是什么?基站数量,POI数量,最大流量->Kmeans算法
      在这里插入图片描述
    • 问:迁移学习指的是什么?使用MBS的流量特征表征SBS的流量特征
  • 最后提出来BS休眠策略,来最小化网络的功耗。从公共数据中收集一些有限的信息,比如总流量和基站数。基于小区的流量预测和基站的容量建模寻求一个区域内基站的最佳数量(?)
    优化公式:

  1. 目标是最小化激活的基站的能量消耗
    min ⁡ n m , n s n m P m + n s P s \min_{n_m,n_s}n_mP_m+n_sP_s nm,nsminnmPm+nsPs
  2. 约束条件
    • 激活的基站应该能提供足够的容量,满足容量需求并且有剩余
      C m ( r ⃗ , n m ) + C s ( r ⃗ , n s ) ⩾ μ + Δ C_m(\vec{r} ,n_m)+C_s(\vec{r} ,n_s) \geqslant \mu + \Delta Cm(r ,nm)+Cs(r ,ns)μ+Δ
    • 激活的宏基站数量限制
    • 激活的微基站数量限制
      在这里插入图片描述

2、使用的数据集

  • Telecom Italia 意大利电信 2015
    链接指路
    • 数据集介绍:
      • This dataset was collected in the city of Milan, Italy, from November 1, 2013, to January 1, 2014.
      • 空域被分为100x100的网格,每个网格是235x235平方米
      • 在每个网格中记录了三种流量信息:short message service(SMS), call service(Call), Internet service
      • 原始数据包括Square ID, Time stamp, SMS-in, SMS-out, Call-in, Call-out and Internet
      • 这个数据集可以用于单变量、多变量的时空预测流量问题
  • POI(points of interest)信息
    POI information was recorded using Google Places API. Available:https://developers.google.com/maps
    每个方格手机12个不同的POI,包括银行,酒吧等数量
  • 基站数量信息
    BS information is obtained from OpenCellID. Available: https://opencellid.org/
    记录每个网格的基站数量
  • 社交活动:
    Social activity is collected through Dandelion API. Available:
    https://dandelion.eu
    社交活动对于流量预测有着很大的影响

3、结果及分析

在这里插入图片描述
ARIMA模型的偏差最大,因为ARIMA特别关注过去时刻的平均值。此外,LSTM优于ARIMA,因为LSTM能够捕获时间相关性。此外,ConvLSTM能够同时提取时空特征,因此具有比LSTM更好的预测性能。最重要的是,所提出的MGCNLSTM的性能最好,特别是图13中小区流量预测曲线的波峰和波谷。这是因为MGCN-LSTM利用了多图卷积,从各个方面捕捉空间特征。

误差的CDF图:
在这里插入图片描述
对于SMS流量,ARIMA、LSTM、ConvLSTM和MGCN-LSTM的绝对误差分别小于1335、622、158、103,概率为80%。与ConvLSTM相比,**MGCNLSTM的性能提高了34.8%。**同样,在图13(e)和图13(f)中,MGCN-LSTM比ConvLSTM分别提高了约47%和11.6%。
在这里插入图片描述
流量预测的优势:

  • 通过GCN模块,采用多图技术提取多个空间特征
  • 时域预测涉及POIs、BSs、社会活动和多周期特征
  • 采用注意机制对提取的特征进行优化

结论:网络容量取决于BS数量,和环境差异无关(POI数量,社交活动数量,基站数量)
宏基站的数量增加,网络容量和基站数量成线性增长趋势,但是在成熟中心,容量不会一直随基站的数量增加而增加,而是逐渐趋向饱和,这是因为小区密集化过程的干扰也不断增加
但是微基站的容量随基站数量的变化曲线却没有饱和区属,因为微基站的传输功率较低,告饶引起的容量饱和只出现在超密集网络的场景中,米兰的流量数据微基站并没有达到超密集的程度(我想在超密集网络的场景下做诶
在这里插入图片描述
结论:激活的微基站数量和流量的变化有关,宏基站变化不大。因为宏基站目标是无缝覆盖小区和用户移动,我们的策略是激活最少数量的宏基站,但流量负载超过基本水平时,才会激活更多的宏基站微基站增加网络容量,由于微基站的功耗是远小于宏基站的,所以肯定会为了节能尽可能多的启动微基站来提高网络容量。
结论:非线性模型和穷举搜索得到的最优数很接近。二次函数比线性函数更加精确
结论:郊区的流量比城市的流量小,所以基站数量也少
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/cd821a47583a45d2a770e0826a52eed0.png
结论:能耗和激活的基站数量有关
在这里插入图片描述

4、郭郭有话说

这篇文献就是通过时域和空域对流量进行预测,用预测的结果来决定基站激活的数量,进而降低消耗。其中基站的容量通过建模来获得,使用聚类把不同地区的基站聚为一类,然后使用迁移学习,农村包围城市的方法来得到全部基站的容量信息。

整理流量预测的代码

  • paper with code
    搜索词条:cellular traffic prediction
  1. Towards Energy-Aware Federated Traffic Prediction for Cellular Networks_2022
    链接:link here
    描述:我们通过提出一种新的可持续性指标来评估ML模型的可行性,从而解决了联邦学习中准确性和能耗之间的权衡。然后,我们使用来自 Barcelona, Spain地区基站(BS)站点的实际测量数据,在联邦场景中全面评估了最先进的深度学习(DL)架构。
    github链接:link here
    论文:Federated Learning for 5G Base Station Traffic Forecasting
    大赛:Federated Traffic Prediction for 5G and Beyond Challenge link
    代码说明:该代码可以作为联邦时间序列预测的基准。我们专注于原始LTE数据,并使用三个不同基站在不同时间间隔上的测量来训练一个全局联合模型。具体来说,我们在具有分布、数量和时间倾斜的非id设置上实现了6种不同的模型架构(MLP、RNN、LSTM、GRU、CNN、双注意力LSTM自动编码器)和9种不同的联邦聚合算法(SimpleAvg、MedianAvg、FedAvg、FedProx、FedAvgM、FedNova、FedAdagrad、FedYogi、FedAdam)。
    代码:pytorch python3.8
  2. Adaptive(适应的) Hybrid(混合的) Spatial-Temporal Graph Neural Network for Cellular Traffic Prediction_2023
    链接:link here
    描述:蜂窝通信量预测是智能通信网的重要组成部分。然而,由于频繁的用户移动性和复杂的网络调度机制,蜂窝流量通常继承复杂的时空模式,这使得预测非常具有挑战性。尽管最近提出了一些先进的算法,如基于图的预测方法,但它们经常基于静态或动态图来建模空间依赖性,而忽略了由交通生成引起的共存的多个空间相关性。同时,一些研究缺乏对蜂窝通信模式多样性的考虑,导致预测结果不够理想。在本文中,我们提出了一种新的深度学习网络架构,自适应混合时空图神经网络(AHSTGNN),以解决蜂窝流量预测问题。首先,我们应用自适应混合图学习来学习信号塔之间的复合空间相关性。其次,我们实现了一个具有多周期时间数据输入的时间卷积模块,以捕获非线性时间依赖性。此外,我们还引入了一个额外的时空自适应模块来克服信号塔的异质性。我们在两个真实蜂窝流量数据集上的实验表明,AHSTGNN的性能明显优于最先进的技术,这说明了我们的方法在时空蜂窝流量预测方面具有优越的可扩展性。
    论文:Adaptive Hybrid Spatial-Temporal Graph Neural Network for Cellular Traffic Prediction
    数据集:米兰数据集(公开的)
    代码:AHSTGNN
    Requirements:
    python 3.9
    numpy == 1.20.3
    scipy == 1.7.3
    pandas == 1.5.3
    torch == 1.11.0
  3. Dual Attention-Based Federated Learning for Wireless Traffic Prediction
    链接:link here
    描述:巴拉巴拉流量预测很重要,现有的流量预测方法大多使用集中式训练结构,需要大量的流量数据,这样就有隐私问题的隐患,提出了一个流量预测架构叫做:Dual Attention-Based Federated Learning(FedDA),这个高质量的预测模型是由多个边缘客户端协同训练的。为了同时捕获各种无线通信模式并将原始数据保存在本地,FedDA首先使用一个小型增强数据集将客户端分组到不同的集群中。然后,训练准全局模型并作为先验知识在客户端之间共享,旨在解决联邦学习面临的统计异质性挑战。为了构建全局模型,我们进一步提出了一种dual attention方案,即通过聚集簇内和簇间模型来代替简单地平均局部模型的权重。我们在两个真实世界的无线流量数据集上进行了广泛的实验,结果表明FedDA优于最先进的方法。这两个数据集的平均均方误差性能增益分别高达10%和30%。
    论文:Dual Attention-Based Federated Learning for Wireless Traffic Prediction
    数据集:First one Milano and second one Trentino
    github代码:link here
  4. Long term 5G network traffic forecasting via modeling non-stationarity(非平稳) with deep learning_2023
    链接:添加链接描述
    描述:流量的增长超过了网络的扩张,这种不匹配可能会降低网络质量并导致严重的性能问题。为了降低风险,运营商需要长期流量预测,以便提前几个月实施网络扩展计划。然而,长期预测水平暴露了序列数据的非平稳性,从而降低了现有方法的性能。我们通过开发深度学习模型Diviner来解决这个问题,Diviner将平稳过程整合到一个设计良好的分层结构中,并对具有多尺度稳定特征的非平稳时间序列进行建模。我们展示了Diviner在5G网络流量预测方面的显著性能改进,对具有复杂流量模式的大型端口进行了详细的月级预测。大量的实验进一步证明了它在不需要任何修改的情况下对各种预测场景的适用性,显示了解决更广泛的工程问题的潜力。
    论文:Long term 5G network traffic forecasting via modeling non-stationarity with deep learning
    数据集给出了
    github代码:link here
    Requirements
    Python 3.6+
    numpy == 1.21.6
    pandas == 1.3.5
    scikit_learn == 1.0.2
    torch == 1.12.0+cu113

搜素词条:cellular traffic forecasting

  1. FC-GAGA: Fully Connected Gated Graph Architecture for Spatio-Temporal Traffic Forecasting_2020
    链接:link here
    描述:多元时间序列预测是交通管理、蜂窝网络配置和定量金融等领域的重要问题。当存在捕获时间序列之间关系的可用图表时,就会出现这种问题的特殊情况。在本文中,我们提出了一种新的学习架构,可以在不需要图知识的情况下实现与现有最佳算法竞争或更好的性能。我们提出的体系结构的关键要素是可学习的全连接硬图门控机制,它可以在交通预测应用中使用最先进的、计算效率最高的全连接时间序列预测体系结构。两个公共交通网络数据集的实验结果说明了我们的方法的价值,消融研究证实了架构中每个元素的重要性。
    github代码:link here
  • kaggle:
  1. Forecasting Mobile Network Traffic RNN
    链接:link here
    数据集:Telecommunications - SMS, Call, Internet - MI
  • github:
  1. 一个好像没有写完的demo:LSTM
    链接:link here
  2. Spatio-Temporal-mobile-traffic-forecasting_2020
    链接:link here
    硕士毕业论文,看起来还不错
  • medium:
  1. Cellular Traffic Prediction using Deep Neural Network(LSTM)
    链接:link here
    目前只找到这么多了,之后可以继续找😕

3、今日学习总结

今天读了文献,对代码进行了整理,效率比较低,因为一直想看抖音hhh
下次还是要把手机拿远一点!
回去,原神启动!
在这里插入图片描述
在这里插入图片描述

ps 有没有深度学习研究生搭子一起假期发论文!🤡

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/226406.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

边缘智能网关在智慧大棚上的应用突破物联网大关

边缘智能网关在智慧大棚上的应用,是现代农业技术的一大突破。通过与农作物生长模型的结合,边缘智能网关可以根据实时的环境数据和历史数据,预测农作物的生长趋势和产量,提供决策支持和优化方案。这对于农民来说,不仅可…

Rosalind 033 Finding a Shared Spliced Motif

题目背景: 上述问题的解决方法是使用动态规划来找出两个DNA字符串的最长公共子序列(LCS)。 https://rosalind.info/problems/lcsq/ 很经典的动态规划问题了。直接给出解题步骤: 1. 初始化矩阵:创建一个大小为 (len…

Qt的简单游戏实现提供完整代码

文章目录 1 项目简介2 项目基本配置2.1 创建项目2.2 添加资源 3 主场景3.1 设置游戏主场景配置3.2 设置背景图片3.3 创建开始按钮3.4 开始按钮跳跃特效实现3.5 创建选择关卡场景3.6 点击开始按钮进入选择关卡场景 4 选择关卡场景4.1场景基本设置4.2 背景设置4.3 创建返回按钮4.…

[react]脚手架create-react-app/vite与reac项目

[react]脚手架create-react-app/vite与reac项目 环境问题描述create-react-app 脚手架根据脚手架修改项目结构安装脚手架注入配置文件-config文件夹package.json文件变更删除 serviceWorker.js新增reportWebVitals.js文件更新index.js文件 脚手架creat-react-app 缺点 vite 脚手…

助力城市部件[标石/电杆/光交箱/人井]精细化管理,基于YOLOv6开发构建生活场景下城市部件检测识别系统

井盖、店杆、光交箱、通信箱、标石等为城市中常见部件,在方便居民生活的同时,因为后期维护的不及时往往会出现一些“井盖吃人”、“线杆、电杆、线缆伤人”事件。造成这类问题的原因是客观的多方面的,这也是城市化进程不断发展进步的过程中难…

垃圾收集器与内存分配策略

内存分配和回收原则 对象优先在Eden区分配 大对象直接进入老年代 长期存活的对象进入老年代 什么是内存泄漏 不再使用的对象在系统中未被回收,内存泄漏的积累可能会导致内存溢出 自动垃圾回收与手动垃圾回收 自动垃圾回收:由虚拟机来自动回收对象…

“2023年的技术发展与个人成长:回顾与展望“

文章目录 每日一句正能量前言工作生活未来展望后记 每日一句正能量 凡事顺其自然,遇事处于泰然,得意之时淡然,失意之时坦然,艰辛曲折必然,历尽沧桑悟然。 前言 在这快速发展的信息时代,技术的进步和创新不…

spring、springmvc、springboot、springcloud简介

spring简介 spring是什么? spring: 春天spring: 轻量级的控制反转和面向切面编程的框架 历史 2002年,首次推出spring雏形,interface 21框架2004年,发布1.0版本Rod Johnson: 创始人,悉尼大学,音乐学博士…

docker compose 部署 grafana + loki + vector 监控kafka消息

Centos7 随笔记录记录 docker compose 统一管理 granfana loki vector 监控kafka 信息。 当然如果仅仅是想通过 Grafana 监控kafka,推荐使用 Grafana Prometheus 通过JMX监控kafka 目录 1. 目录结构 2. 前提已安装Docker-Compose 3. docker-compose 自定义服…

DRF从入门到精通六(排序组件、过滤组件、分页组件、异常处理)

文章目录 一、排序组件继承GenericAPIView使用DRF内置排序组件继承APIView编写排序 二、过滤组件继承GenericAPIView使用DRF内置过滤器实现过滤使用第三方模块django-filter实现and关系的过滤自定制过滤类排序搭配过滤使用 三、分页组件分页器一:Pagination&#xf…

Linux 线程概念

文章目录 前言线程的概念线程的操作操作的原理补充与说明 前言 ① 函数的具体说明被放在补充与说明部分 ② 只说些基础概念和函数使用 线程的概念 网络回答:Linux 线程是指在 Linux 操作系统中创建和管理的轻量级执行单元。线程是进程的一部分,与进程…

【电子通识】开关的种类

开关在我们日常生活与工作中使用较多。开关有无数种形式,种类繁多。从微小的按钮到巨大的控制器,功能多种多样。这种多样性受到机械或电气操作、手动或电子控制等因素的影响,并且与个人在设计美学和用户界面方面的偏好也有关。 电子开关采用 …

LabVIEW利用视觉引导机开发器人精准抓取

LabVIEW利用视觉引导机开发器人精准抓取 本项目利用单目视觉技术指导多关节机器人精确抓取三维物体的技术。通过改进传统的相机标定方法,结合LabVIEW平台的Vision Development和Vision Builder forAutomated Inspection组件,优化了摄像系统的标定过程&a…

低代码平台在金融银行中的应用场景

随着数字化转型的推进,商业银行越来越重视技术在业务发展中的作用。在这个背景下,白码低代码平台作为一种新型的开发方式,正逐渐受到广大商业银行的关注和应用。白码低代码平台能够快速构建各类应用程序,提高开发效率,…

概率论相关题型

文章目录 概率论的基本概念放杯子问题条件概率与重要公式的结合独立的运用 随机变量以及分布离散随机变量的分布函数特点连续随机变量的分布函数在某一点的值为0正态分布标准化随机变量函数的分布 多维随机变量以及分布条件概率max 与 min 函数的相关计算二维随机变量二维随机变…

<JavaEE> TCP 的通信机制(五) -- 延时应答、捎带应答、面向字节流

目录 TCP的通信机制的核心特性 七、延时应答 1)什么是延时应答? 2)延时应答的作用 八、捎带应答 1)什么是捎带应答? 2)捎带应答的作用 九、面向字节流 1)沾包问题 2)“沾包…

NXP实战笔记(三):S32K3xx基于RTD-SDK在S32DS上配置WDT配置

目录 1、WDT概述 2、SWT配置 2.1、超时时间,复位方式的配置 2.2、中断形式 1、WDT概述 SWT 编程模型只允许 32 位(字)访问。 以下任何尝试访问都是无效的: •非32位访问 •写入只读寄存器 •启用SWT时,将不正确的值写入SR…

Mongodb基础介绍与应用场景

NoSql 解决方案第二种 Mongodb MongoDB 是一款开源 高性能 无模式的文档型数据库 当然 它是NoSql数据库中的一种 是最像关系型数据库的 非关系型数据库 首先 最需要注意的是 无模式的文档型数据库 这个需要后面我们看到它的数据才能明白 其次是 最像关系型数据库的非关系型数据…

基于采样的自动驾驶规划算法 - PRM,RRT,RRT*,CL-RRT

本文将讲解PRM,RRT,RRT*自动驾驶规划算法原理,不正之处望读者指正 0 前言 机器人运动规划的基本任务:从开始位置到目标位置的运动 (1)如何躲避构型空间出现的障碍物 (2)如何满足机器…

小型企业成为网络犯罪分子获取数据的目标

在过去十年的大部分时间里,网络犯罪的巨额资金来自针对大型组织的勒索软件攻击。这种威胁仍然存在。但犯罪分子可能会将注意力转向中小企业 (SMB)。这对消费者的影响将是巨大的。 将软件即服务 (SaaS) 技术用于核心业务功能继续将中小企业整合到全球供应链中。由于…