文章目录
- 积分计算
- 递推+重点补充
积分计算
求导 ⇄ 积分 求导 \rightleftarrows 积分 求导⇄积分
求导 | 积分 |
---|---|
( t ) ′ = 1 \large (t)'=1 (t)′=1 | ∫ t d t = 1 2 t 2 + c \large\int tdt=\frac{1}{2}t^2+c ∫tdt=21t2+c |
( 1 x ) ′ = − 1 x 2 \large(\frac{1}{x})'=-\frac{1}{x^2} (x1)′=−x21 | ∫ 1 x 2 d x = − 1 x + c \large\int \frac{1}{x^2}dx=-\frac{1}{x}+c ∫x21dx=−x1+c |
( l n x ) ′ = 1 x \large(lnx)'=\frac{1}{x} (lnx)′=x1 | ∫ 1 x d x = ∫ d x x = l n ∣ x ∣ + c \large{\int \frac{1}{x}dx=\int \frac{dx}{x}=ln|x|+c} ∫x1dx=∫xdx=ln∣x∣+c |
( x ) ′ = 1 2 x \large(\sqrt{x})'=\frac{1}{2\sqrt{x}} (x)′=2x1 | ∫ 1 x d x = 2 x + c \large\int \frac{1}{\sqrt{x}}dx=2\sqrt{x}+c ∫x1dx=2x+c |
( a x ) ′ = a x l n a \large(a^x)'=a^xlna (ax)′=axlna | ∫ a x d x = a x l n a + c \large\int a^xdx= \frac{a^x}{lna}+c ∫axdx=lnaax+c |
( s i n x ) ′ = c o s x \large(sinx)'=cosx (sinx)′=cosx | ∫ c o s x d x = s i n x + c \large\int cosxdx=sinx+c ∫cosxdx=sinx+c |
( t a n x ) ′ = s e c 2 x \large(tanx)'=sec^2x (tanx)′=sec2x | ∫ s e c 2 x d x = t a n x + c \large\int sec^2xdx=tanx+c ∫sec2xdx=tanx+c |
( s e c x ) ′ = ( 1 c o s x ) ′ = s e c x t a n x = − s i n x c o s 2 x \large(secx)'=(\frac{1}{cosx})'=secxtanx=-\frac{sinx}{cos^2x} (secx)′=(cosx1)′=secxtanx=−cos2xsinx | ∫ s e c x t a n x d x = s e c x + c \large\int secxtanxdx=secx+c ∫secxtanxdx=secx+c |
( c o s x ) ′ = − s i n x \large(cosx)'=-sinx (cosx)′=−sinx | ∫ s i n x d x = − c o s x + c \large\int sinxdx=-cosx+c ∫sinxdx=−cosx+c |
( c o t x ) ′ = − c s c 2 x \large(cotx)'=-csc^2x (cotx)′=−csc2x | ∫ c s c 2 x d x = − c o t x + c \large\int csc^2xdx=-cotx+c ∫csc2xdx=−cotx+c |
( c s c x ) ′ = ( 1 s i n x ) ′ = − c s c c o t x = − c o s x s i n 2 x \large(cscx)'=(\frac{1}{sinx})'=-csccotx=-\frac{cosx}{sin^2x} (cscx)′=(sinx1)′=−csccotx=−sin2xcosx | ∫ c s c c o t d x = − c s c x + c \large\int csccotdx=-cscx+c ∫csccotdx=−cscx+c |
( a r c t a n x ) ′ = 1 1 + x 2 \large(arctanx)'=\frac{1}{1+x^2} (arctanx)′=1+x21 | ∫ 1 1 + x 2 d x = a r c t a n x + c \large\int \frac{1}{1+x^2}dx=arctanx+c ∫1+x21dx=arctanx+c |
( a r c c o t x ) ′ = − 1 1 + x 2 \large(arccotx)'=-\frac{1}{1+x^2} (arccotx)′=−1+x21 | ∫ − 1 1 + x 2 d x = a r c c o t x + c \large\int -\frac{1}{1+x^2}dx=arccotx+c ∫−1+x21dx=arccotx+c |
( a r c s i n x ) ′ = 1 1 − x 2 \large(arcsinx)'=\frac{1}{\sqrt{1-x^2}} (arcsinx)′=1−x21 | ∫ 1 1 − x 2 d x = a r c s i n x + c \large\int\frac{1}{\sqrt{1-x^2}}dx=arcsinx+c ∫1−x21dx=arcsinx+c |
( a r c c o s x ) ′ = − 1 1 − x 2 \large(arccosx)'=-\frac{1}{\sqrt{1-x^2}} (arccosx)′=−1−x21 | ∫ − 1 1 − x 2 d x = a r c c o s x + c \large\int -\frac{1}{\sqrt{1-x^2}}dx=arccosx+c ∫−1−x21dx=arccosx+c |
t a n 2 x + 1 = ( s i n x c o s x ) 2 + 1 = ( s i n 2 x + c o s 2 x c o s 2 x ) = 1 c o s 2 x = s e c 2 x 同理 c o t 2 x + 1 = c s c 2 x \large tan^2x+1=(\frac{sinx}{cosx})^2+1=(\frac{sin^2x+cos^2x}{cos^2x})=\frac{1}{cos^2x}=sec^2x \\ \\~\\ 同理cot^2x+1=csc^2x\\~ tan2x+1=(cosxsinx)2+1=(cos2xsin2x+cos2x)=cos2x1=sec2x 同理cot2x+1=csc2x
∫ t a n 2 x d x = ∫ ( s e c 2 x − 1 ) d x = t a n x − x + c \int tan^2x dx = \int (sec^2x-1 )dx=tanx-x+c \\~\\~ ∫tan2xdx=∫(sec2x−1)dx=tanx−x+c
不定积分公式【积分 ∫ 记得 + C 】 \large 不定积分公式【积分\int记得+C】\\~ 不定积分公式【积分∫记得+C】
3. 和 4. 的常数 a 2 在前 a r c 反三角函数 , 5. 的 x 2 在前 l n ( 组合 ) ; 8. 和 9. 为 x 2 在前 x 2 ( 本身 ) + l n ( x + 本身 ) , 10. 为 x 2 ( 本身 ) 3.和4.的常数a^2在前arc反三角函数,5.的x^2在前ln(组合); ~8.和9.为\sqrt{x^2}在前 \frac{x}{2} (本身)+ln(x+本身),10.为\frac{x}{2} (本身) 3.和4.的常数a2在前arc反三角函数,5.的x2在前ln(组合); 8.和9.为x2在前2x(本身)+ln(x+本身),10.为2x(本身)
\\~\\~
1. ∫ s e c x d x = ∫ 1 c o s x d x = ∫ d x c o s x = l n ∣ s e c x + t a n x ∣ + C 1.\large{\int secxdx=\int \frac{1}{cosx}dx=\int \frac{dx}{cosx}=ln|secx+tanx|+C }\\~ 1.∫secxdx=∫cosx1dx=∫cosxdx=ln∣secx+tanx∣+C
2. ∫ c s c x d x = ∫ 1 s i n x d x = ∫ d x s i n x = l n ∣ c s c x − c o t x ∣ + C 2. \large{\int cscxdx =\int \frac{1}{sinx}dx =\int \frac{dx}{sinx}= ln|cscx-cotx|+C }\\~ 2.∫cscxdx=∫sinx1dx=∫sinxdx=ln∣cscx−cotx∣+C
3. ∫ 1 a 2 − x 2 d x = a r c s i n x a + C 3.\large{ \int \frac{1}{\sqrt{a^2-x^2}}dx=arcsin\frac{x}{a}+C }\\~ 3.∫a2−x21dx=arcsinax+C
4. ∫ 1 a 2 + x 2 d x = 1 a a r c t a n x a + C 4. \large{\int \frac{1}{a^2+x^2}dx = \frac{1}{a}arctan\frac{x}{a}+C}\\~ 4.∫a2+x21dx=a1arctanax+C
5. ∫ 1 x 2 ± a 2 d x = l n ∣ x + x 2 ± a 2 ∣ + C 5. \large{\int \frac{1}{\sqrt{x^2 \pm a^2}}dx=ln|x+\sqrt{x^2 \pm a^2}| + C}\\~ 5.∫x2±a21dx=ln∣x+x2±a2∣+C
6. ∫ 1 1 + e x d x = x − l n ( 1 + e x ) + C = − l n ( 1 + e − x ) + C 6. \large{\int \frac{1}{1+e^x}dx=x-ln(1+e^x)+C=-ln(1+e^{-x})+C }\\~ 6.∫1+ex1dx=x−ln(1+ex)+C=−ln(1+e−x)+C
7. ∫ 1 a 2 − x 2 d x = 1 2 a l n ∣ a + x a − x ∣ + C = − [ ∫ 1 x 2 − a 2 d x ] = − [ 1 2 a l n ∣ x − a x + a ∣ ] + C 7.\large{\int \frac{1}{a^2-x^2}dx=\frac{1}{2a}ln|\frac{a+x}{a-x}|+C=-[\int \frac{1}{x^2-a^2}dx]=-[~~\frac{1}{2a}ln|\frac{x-a}{x+a}|~~]+C }\\~ 7.∫a2−x21dx=2a1ln∣a−xa+x∣+C=−[∫x2−a21dx]=−[ 2a1ln∣x+ax−a∣ ]+C
8. ∫ x 2 + a 2 = x 2 x 2 + a 2 + a 2 2 l n ( x + x 2 + a 2 ) + C 8. \large{\int \sqrt{x^2+a^2}= \frac{x}{2} \sqrt{x^2+a^2}+\frac{a^2}{2}ln(x+\sqrt{x^2+a^2})+C}\\~ 8.∫x2+a2=2xx2+a2+2a2ln(x+x2+a2)+C
9. ∫ x 2 − a 2 = x 2 x 2 − a 2 − a 2 2 l n ( x + x 2 − a 2 ) + C 9. \large{\int \sqrt{x^2-a^2}= \frac{x}{2} \sqrt{x^2-a^2}-\frac{a^2}{2}ln(x+\sqrt{x^2-a^2})+C}\\~ 9.∫x2−a2=2xx2−a2−2a2ln(x+x2−a2)+C
10. ∫ a 2 − x 2 = x 2 a 2 − x 2 + a 2 2 a r c s i n x a + C 10. \large{\int \sqrt{a^2-x^2}= \frac{x}{2} \sqrt{a^2-x^2}+\frac{a^2}{2}arcsin\frac{x}{a}+C} \\~\\~\\~ 10.∫a2−x2=2xa2−x2+2a2arcsinax+C
因为有常数 C , 同一积分可有多种答案 , 可求导验证正确性 : 因为有常数C,同一积分可有多种答案,可求导验证正确性: 因为有常数C,同一积分可有多种答案,可求导验证正确性:
1. ( l n ∣ s e c x + t a n x ∣ ) ′ = 1 s e c x + t a n x ( s e c x t a n x + s e c 2 x ) = s e c x ( t a n x + s e c x ) s e c x + t a n x = s e c x 1.\large(ln|secx+tanx|)'=\frac{1}{secx+tanx}(secxtanx+sec^2x)=\frac{secx(tanx+secx)}{secx+tanx}=secx \\~ 1.(ln∣secx+tanx∣)′=secx+tanx1(secxtanx+sec2x)=secx+tanxsecx(tanx+secx)=secx
2. ( l n ∣ c s c x − c o t x ∣ ) ′ = 1 c s c x − c o t x ( − c s c x c o t x + c s c 2 x ) = c s c x ( − c o t x + c s c x ) c s c x − c o t x = c s c x 2.\large(ln|cscx-cotx|)'=\frac{1}{cscx-cotx}(-cscxcotx+csc^2x)=\frac{cscx(-cotx+cscx)}{cscx-cotx}=cscx \\~ 2.(ln∣cscx−cotx∣)′=cscx−cotx1(−cscxcotx+csc2x)=cscx−cotxcscx(−cotx+cscx)=cscx
3. ( a r c s i n x a ) ′ = 1 1 − ( a x ) 2 ∗ 1 a = 1 a 2 − x 2 3.\large(arcsin\frac{x}{a})'=\frac{1}{\sqrt{1-(\frac{a}{x})^2}}*\frac{1}{a}=\frac{1}{\sqrt{a^2-x^2}} \\~ 3.(arcsinax)′=1−(xa)21∗a1=a2−x21
4. ( 1 a a r c t a n x a ) ′ = 1 a ∗ 1 1 + ( x a ) 2 = 1 a 2 + x 2 4.\large(\frac{1}{a}arctan\frac{x}{a})'=\frac{1}{a}*\frac{1}{1+(\frac{x}{a})^2}=\frac{1}{a^2+x^2} \\~ 4.(a1arctanax)′=a1∗1+(ax)21=a2+x21
5. ( l n ∣ x + x 2 ± a 2 ∣ ) ′ = 1 x + x 2 ± a 2 ∗ ( 1 + 1 2 x 2 ± a 2 ∗ 2 x ) = 1 x + x 2 ± a 2 ∗ ( x 2 ± a 2 + x x 2 ± a 2 ) = 1 x 2 ± a 2 5.\large{(ln|x+\sqrt{x^2 \pm a^2}| )'= \frac{1}{x+\sqrt{x^2 \pm a^2}}*(1+\frac{1}{2\sqrt{x^2 \pm a^2}}*2x)=\frac{1}{x+\sqrt{x^2 \pm a^2}}*(\frac{\sqrt{x^2 \pm a^2 }+x}{\sqrt{x^2 \pm a^2}})=\frac{1}{\sqrt{x^2 \pm a^2}} }\\~ 5.(ln∣x+x2±a2∣)′=x+x2±a21∗(1+2x2±a21∗2x)=x+x2±a21∗(x2±a2x2±a2+x)=x2±a21
6. ( x − l n ( 1 + e x ) + C ) ′ = 1 − 1 1 + e x ∗ e x = 1 + e x − 1 1 + e x = 1 1 + e x 6.\large{(x-ln(1+e^x)+C)'=1-\frac{1}{1+e^x}*e^x=\frac{1+e^x-1}{1+e^x}=\frac{1}{1+e^x} } \\~ 6.(x−ln(1+ex)+C)′=1−1+ex1∗ex=1+ex1+ex−1=1+ex1
∫ 1 1 + e x d x 多种积分解法 : \large{\int \frac{1}{1+e^x}dx}多种积分解法:\\~ ∫1+ex1dx多种积分解法:
凑微分: ∫ 1 1 + e x d x = ∫ 1 + e x − e x 1 + e x d x = ∫ 1 d x − ∫ 1 1 + e x d ( 1 + e x ) = x − l n ( 1 + e x ) + C 凑微分:\large{\int \frac{1}{1+e^x}dx}=\large{\int \frac{1+e^x-e^x}{1+e^x}dx}=\large{\int 1dx-\int \frac{1}{1+e^x}d(1+e^x)}=x-ln(1+e^x)+C \\~ 凑微分:∫1+ex1dx=∫1+ex1+ex−exdx=∫1dx−∫1+ex1d(1+ex)=x−ln(1+ex)+C
提公因子: ∫ 1 1 + e x d x = ∫ 1 e x ( e − x + 1 ) d x = ∫ e − x e − x + 1 d x = − ∫ 1 e − x + 1 ( e − x + 1 ) = − l n ( 1 + e − x ) + C = − l n ( e x + 1 e x ) + C = − ( l n ( e x + 1 ) − l n e x ) + C = x − l n ( 1 + e x ) + C 提公因子:\large{\int \frac{1}{1+e^x}dx=\int \frac{1}{e^x(e^{-x}+1)}dx= \int \frac{e^{-x}}{e^{-x}+1}dx}=-\int \frac{1}{e^{-x}+1}(e^{-x}+1)=-ln(1+e^{-x})+C \\ =-ln(\frac{e^x+1}{e^{x}})+C=-(ln(e^x+1)-lne^x)+C=x-ln(1+e^x)+C \\~ 提公因子:∫1+ex1dx=∫ex(e−x+1)1dx=∫e−x+1e−xdx=−∫e−x+11(e−x+1)=−ln(1+e−x)+C=−ln(exex+1)+C=−(ln(ex+1)−lnex)+C=x−ln(1+ex)+C
换元法: ∫ 1 1 + e x d x = ∫ e x e x ( 1 + e x ) d x = ∫ 1 e x ( 1 + e x ) d e x 令 t = e x ∫ 1 t ( 1 + t ) d t = ∫ 1 t − 1 1 + t d t = l n e x − l n ( 1 + e x ) + C = x − l n ( 1 + e x ) + C 换元法:\large\int \frac{1}{1+e^x}dx=\int \frac{e^x}{e^x(1+e^x)}dx=\int \frac{1 }{e^x(1+e^x)}de^x ~~\frac{令t=e^x}{}~~ \int \frac{1}{t(1+t)}dt = \int \frac{1}{t}-\frac{1}{1+t}dt \\ =lne^x-ln(1+e^x)+C=x-ln(1+e^x)+C \\~ 换元法:∫1+ex1dx=∫ex(1+ex)exdx=∫ex(1+ex)1dex 令t=ex ∫t(1+t)1dt=∫t1−1+t1dt=lnex−ln(1+ex)+C=x−ln(1+ex)+C
7. ( 1 2 a l n ∣ a + x a − x ∣ ) ′ = 1 2 a ( l n ∣ a + x ∣ − l n ∣ a − x ∣ ) ′ = 1 2 a ( 1 a + x ∗ 1 − 1 a − x ∗ ( − 1 ) ) [ 复合函数求导 ] = 1 2 a ( ( a − x ) + ( a + x ) a 2 − x 2 ) = 1 2 a ( 2 a a 2 − x 2 ) = 1 a 2 − x 2 7.\large(\frac{1}{2a}ln|\frac{a+x}{a-x}|)'=\frac{1}{2a}(ln|a+x|-ln|a-x|)'=\frac{1}{2a}(\frac{1}{a+x}*1 -\frac{1}{a-x}*(-1)) [\small{复合函数求导}] \\ \large=\frac{1}{2a}(\frac{(a-x)+(a+x)}{a^2-x^2})=\frac{1}{2a}(\frac{2a}{a^2-x^2})=\frac{1}{a^2-x^2} \\~ 7.(2a1ln∣a−xa+x∣)′=2a1(ln∣a+x∣−ln∣a−x∣)′=2a1(a+x1∗1−a−x1∗(−1))[复合函数求导]=2a1(a2−x2(a−x)+(a+x))=2a1(a2−x22a)=a2−x21
∫ 1 x 2 − a 2 d x = ∫ 1 ( x + a ) ( x − a ) d x = ∫ 1 2 a [ 1 x − a − 1 x + a ] d x = 1 2 a l n ∣ a + x a − x ∣ \int \frac{1}{x^2-a^2}dx=\int \frac{1}{(x+a)(x-a)}dx=\int\frac{1}{2a}[ \frac{1}{x-a}-\frac{1}{x+a}]dx=\frac{1}{2a}ln|\frac{a+x}{a-x}|\\~ ∫x2−a21dx=∫(x+a)(x−a)1dx=∫2a1[x−a1−x+a1]dx=2a1ln∣a−xa+x∣
8. ( x 2 x 2 + a 2 + a 2 2 l n ( x + x 2 + a 2 ) ) ′ = 1 2 x 2 + a 2 + x 2 ( 1 2 ( x 2 + a 2 ) − 1 2 ∗ 2 x ) + a 2 2 1 x + x 2 + a 2 ∗ ( 1 + 1 2 ( x 2 + a 2 ) − 1 2 ∗ 2 x ) = 1 2 x 2 + a 2 + x 2 2 x 2 + a 2 + a 2 2 ( 1 x + x 2 + a 2 ) ( x + x 2 + a 2 x 2 + a 2 ) = 1 2 x 2 + a 2 + x 2 2 x 2 + a 2 + a 2 2 x 2 + a 2 = 1 2 x 2 + a 2 + x 2 + a 2 2 x 2 + a 2 = 1 2 x 2 + a 2 + 1 2 x 2 + a 2 = x 2 + a 2 8.\large (\frac{x}{2} \sqrt{x^2+a^2}+\frac{a^2}{2}ln(x+\sqrt{x^2+a^2}~)~)' \\ =\frac{1}{2} \sqrt{x^2+a^2}+\frac{x}{2} (\frac{1}{2}{(x^2+a^2)}^{-\frac{1}{2}}*2x)+\frac{a^2}{2} \frac{1}{x+\sqrt{x^2+a^2}}*(1+\frac{1}{2}{(x^2+a^2)}^{-\frac{1}{2}}*2x) \\ =\frac{1}{2} \sqrt{x^2+a^2}+\frac{x^2}{2 \sqrt{x^2+a^2}}+\frac{a^2}{2}(\frac{1}{x+\sqrt{x^2+a^2}})(\frac{x+\sqrt{x^2+a^2}}{\sqrt{x^2+a^2}})=\frac{1}{2}\sqrt{x^2+a^2}+\frac{x^2}{2 \sqrt{x^2+a^2}}+\frac{a^2}{2 \sqrt{x^2+a^2}} \\ =\frac{1}{2}\sqrt{x^2+a^2}+\frac{x^2+a^2}{2 \sqrt{x^2+a^2}}=\frac{1}{2}\sqrt{x^2+a^2}+\frac{1}{2}\sqrt{x^2+a^2}=\sqrt{x^2+a^2} \\~ 8.(2xx2+a2+2a2ln(x+x2+a2 ) )′=21x2+a2+2x(21(x2+a2)−21∗2x)+2a2x+x2+a21∗(1+21(x2+a2)−21∗2x)=21x2+a2+2x2+a2x2+2a2(x+x2+a21)(x2+a2x+x2+a2)=21x2+a2+2x2+a2x2+2x2+a2a2=21x2+a2+2x2+a2x2+a2=21x2+a2+21x2+a2=x2+a2
8. ( x 2 x 2 − a 2 − a 2 2 l n ( x + x 2 − a 2 ) ) ′ = x 2 − a 2 8.\large (\frac{x}{2} \sqrt{x^2-a^2}-\frac{a^2}{2}ln(x+\sqrt{x^2-a^2}~)~)' =\sqrt{x^2-a^2} \\~ 8.(2xx2−a2−2a2ln(x+x2−a2 ) )′=x2−a2
10. ( x 2 a 2 − x 2 + a 2 2 a r c s i n x a ) ′ = 1 2 a 2 − x 2 + x 2 ( 1 2 a 2 − x 2 ∗ ( − 2 x ) ) + a 2 2 ( 1 1 − ( x a ) 2 ∗ ( 1 a ) ) = 1 2 a 2 − x 2 + − x 2 2 a 2 − x 2 + a 2 2 a 2 − x 2 = 1 2 a 2 − x 2 + a 2 − x 2 2 a 2 − x 2 = 1 2 a 2 − x 2 + 1 2 a 2 − x 2 = a 2 − x 2 10.\large(\frac{x}{2} \sqrt{a^2-x^2}+\frac{a^2}{2}arcsin\frac{x}{a})'=\frac{1}{2} \sqrt{a^2-x^2}+\frac{x}{2} ( \frac{1}{2\sqrt{a^2-x^2}}*(-2x))+\frac{a^2}{2}(\frac{1}{\sqrt{1-(\frac{x}{a})^2}}*(\frac{1}{a})) \\ =\frac{1}{2} \sqrt{a^2-x^2}+\frac{-x^2}{2\sqrt{a^2-x^2}}+\frac{a^2}{2\sqrt{a^2-x^2}} =\frac{1}{2} \sqrt{a^2-x^2}+ \frac{a^2-x^2}{2\sqrt{a^2-x^2}} \\ =\frac{1}{2} \sqrt{a^2-x^2}+\frac{1}{2} \sqrt{a^2-x^2}= \sqrt{a^2-x^2} \\~\\~\\~ 10.(2xa2−x2+2a2arcsinax)′=21a2−x2+2x(2a2−x21∗(−2x))+2a2(1−(ax)21∗(a1))=21a2−x2+2a2−x2−x2+2a2−x2a2=21a2−x2+2a2−x2a2−x2=21a2−x2+21a2−x2=a2−x2
换元法【两类】 \large 换元法【两类】 换元法【两类】
第一类换元法:凑微分 ( 复合函数逆过程 ) 第一类换元法:凑微分(复合函数逆过程) 第一类换元法:凑微分(复合函数逆过程)
如 ( f ( g ( x ) ) ) ′ = f ′ ( g ( x ) ) ∗ g ′ ( x ) 如(f(g(x)))'=f'(g(x))*g'(x) 如(f(g(x)))′=f′(g(x))∗g′(x)
对应积分 ∫ f ′ ( g ( x ) ) ∗ g ′ ( x ) d x = ∫ f ′ ( g ( x ) ) d g ( x ) 对应积分\int f'(g(x))*g'(x)dx=\int f'(g(x))dg(x) 对应积分∫f′(g(x))∗g′(x)dx=∫f′(g(x))dg(x)
简单换元看出: 令 t = g ( x ) ∫ f ′ ( t ) d t = f ( t ) + c 简单换元看出:\frac{令t=g(x)}{} \int f'(t)dt=f(t)+c 简单换元看出:令t=g(x)∫f′(t)dt=f(t)+c
又如:出题 ∫ e Δ Δ ′ d x , 做题转换成 ∫ e Δ d Δ 又如: 出题\int e^\Delta \Delta' dx,做题转换成\int e^\Delta d\Delta 又如:出题∫eΔΔ′dx,做题转换成∫eΔdΔ
∫ e x 2 x d x = 1 2 ∫ e x 2 ∗ 2 x d x = 1 2 ∫ e x 2 d x 2 = 1 2 e x 2 + c \large\int e^{x^2}xdx=\frac{1}{2} \int e^{x^2}*2xdx=\frac{1}{2} \int e^{x^2}dx^2=\frac{1}{2} e^{x^2}+c \\~ ∫ex2xdx=21∫ex2∗2xdx=21∫ex2dx2=21ex2+c
∫ e x 1 x d x = 2 ∫ e x 1 2 x d x = 2 ∫ e x d x = 2 e x + c \large\int e^{\sqrt{x}} \frac{1}{\sqrt{x}}dx=2 \int e^{\sqrt{x}} \frac{1}{2\sqrt{x}}dx=2 \int e^{\sqrt{x}} d\sqrt{x}=2e^{\sqrt{x}}+c ∫exx1dx=2∫ex2x1dx=2∫exdx=2ex+c
∫ e a r c t a n x 1 1 + x 2 d x = ∫ e a r c t a n x d ( a r c t a n x ) = e a r c t a n x + c \large\int e^{arctanx} \frac{1}{1+x^2}dx=\int e^{arctanx} d(arctanx)=e^{arctanx} +c \\~ ∫earctanx1+x21dx=∫earctanxd(arctanx)=earctanx+c
补: ( l n l n x ) ′ = 1 l n x 1 x = 1 x l n x 补: (lnlnx)'=\frac{1}{lnx} \frac{1}{x}=\frac{1}{xlnx} 补:(lnlnx)′=lnx1x1=xlnx1
∫ 1 x l n x l n l n x d x = 1 x l n x l n l n x d x = 1 l n l n x d ( l n l n x ) = l n ( l n l n x ) + c \int \frac{1}{xlnxlnlnx}dx=\frac{\frac{1}{xlnx}}{lnlnx}dx=\frac{1}{lnlnx}d(lnlnx)=ln(lnlnx)+c \\~ ∫xlnxlnlnx1dx=lnlnxxlnx1dx=lnlnx1d(lnlnx)=ln(lnlnx)+c
∫ m x + n a x 2 + b x + c 先分母求导 ( a x 2 + b x + c ) ′ = 2 a x + b , 则分子凑出 2 a x + b \int \frac{mx+n}{ax^2+bx+c}先分母求导(ax^2+bx+c)'=2ax+b,则分子凑出2ax+b \\~ ∫ax2+bx+cmx+n先分母求导(ax2+bx+c)′=2ax+b,则分子凑出2ax+b
积累变型: ∫ d x a 2 s i n 2 x + b 2 c o s 2 x = ∫ d x c o s 2 x ( a 2 t a n 2 x + b 2 ) = ∫ s e c 2 x ( a 2 t a n 2 x + b 2 ) d x = ∫ 1 ( a 2 t a n 2 x + b 2 ) d ( t a n x ) = 1 a ∫ 1 ( a 2 t a n 2 x + b 2 ) d ( a t a n x ) = 1 a ( 1 b a r c t a n x a t a n x b ) + C [ a , b ≠ 0 ] 积累变型:\\ \large \int \frac{dx}{a^2sin^2x+b^2cos^2x}=\int \frac{dx}{cos^2x(a^2tan^2x+b^2)}=\int \frac{sec^2x}{(a^2tan^2x+b^2)}dx=\int \frac{1}{(a^2tan^2x+b^2)}d(tanx) \\ =\frac{1}{a}\int \frac{1}{(a^2tan^2x+b^2)}d(atanx)=\frac{1}{a}(\frac{1}{b}arctanx\frac{atanx}{b})+C ~~~[a,b\ne 0]\\~ 积累变型:∫a2sin2x+b2cos2xdx=∫cos2x(a2tan2x+b2)dx=∫(a2tan2x+b2)sec2xdx=∫(a2tan2x+b2)1d(tanx)=a1∫(a2tan2x+b2)1d(atanx)=a1(b1arctanxbatanx)+C [a,b=0]
∫ 1 − l n x ( x − l n x ) 2 d x = ∫ 1 − l n x x 2 ( 1 − l n x x ) 2 d x = − ∫ 1 ( 1 − l n x x ) 2 d ( 1 − l n x x ) = ( 1 − l n x x ) − 1 + C \large \int \frac{1-lnx}{(x-lnx)^2}dx=\large \int \frac{\frac{1-lnx}{x^2}}{(1-\frac{lnx}{x})^2}dx=-\int\frac{1}{(1-\frac{lnx}{x})^2}d(1-\frac{lnx}{x})=(1-\frac{lnx}{x})^{-1}+C ∫(x−lnx)21−lnxdx=∫(1−xlnx)2x21−lnxdx=−∫(1−xlnx)21d(1−xlnx)=(1−xlnx)−1+C
凑微分复杂看不出时,试试某部分求导 [ 出题逆向 ] 凑微分复杂看不出时,试试某部分求导[出题逆向] 凑微分复杂看不出时,试试某部分求导[出题逆向]
∫ e t a n 1 x s e c 2 1 x x 2 d x 尝试 ( t a n 1 x ) ′ = s e c 2 1 x ∗ ( − 1 x 2 ) = − s e c 2 1 x x 2 \int \frac{e^{tan\frac{1}{x}}sec^2\frac{1}{x}}{x^2}dx \\ 尝试(tan\frac{1}{x})'=sec^2\frac{1}{x}*(-\frac{1}{x^2})=-\frac{sec^2\frac{1}{x}}{x^2} \\~ ∫x2etanx1sec2x1dx尝试(tanx1)′=sec2x1∗(−x21)=−x2sec2x1
原式 = ∫ e t a n 1 x d t a n 1 x = e t a n 1 x + c 原式=\int e^{tan\frac{1}{x}}dtan\frac{1}{x}=e^{tan\frac{1}{x}}+c 原式=∫etanx1dtanx1=etanx1+c
\\~\\~\\~\\~
第二类换元法 第二类换元法 第二类换元法
三角代换:【注意换回 x 】 三角代换:【注意换回x】 三角代换:【注意换回x】
a 2 − x 2 , 令 x = a sin t 或 a cos t \sqrt{a^2-x^2},令x=a\sin t或a\cos t a2−x2,令x=asint或acost
a 2 + x 2 , 令 x = a tan t 或 a cot t \sqrt{a^2+x^2},令x=a\tan t或a\cot t a2+x2,令x=atant或acott
x 2 − a 2 , 令 x = a sec t 或 a csc t \sqrt{x^2-a^2},令x=a\sec t或a\csc t x2−a2,令x=asect或acsct
\\~
三角代换推导公式 : 三角代换推导公式: 三角代换推导公式:
根式代换:令 t = 根式 根式代换:令t=\sqrt{根式} 根式代换:令t=根式
∫ x 3 x + 1 d x 令 t = x ∫ t 3 t + 1 2 t d t [ t 2 = x , 2 t d t = d x ] = 2 ∫ t 4 t + 1 d t = 2 ∫ [ ( t − 1 ) ( t 2 + 1 ) + 1 t + 1 ] d t − ∫ t t + 1 d t 2 ∫ t 4 − t + t 3 − t 3 + t 2 − t 2 + t − t + 1 − 1 t + 1 d t ( 多项式除法,凑分母倍数 ) = 2 ∫ t 3 ( t + 1 ) − t 2 ( t + 1 ) + t ( t + 1 ) − 2 ( t + 1 ) + 2 t + 1 d t = 2 ∫ t 3 − t 2 + t − 2 + 2 t + 1 d t = 1 2 t 4 − 2 3 t 3 + t 2 − 2 t + 2 l n ∣ t + 1 ∣ + c = 1 2 x 2 − 2 3 x 3 + x − 4 x + 4 l n ( x + 1 ) + c [ l n x , x > 0 ] \int \frac{\sqrt{x^3}}{\sqrt{x}+1}dx \frac{令t=\sqrt{x}}{} \int \frac{t^3}{t+1}2tdt~~~[t^2=x,2tdt=dx] \\ =2\int \frac{t^4}{t+1}dt=2\int [(t-1)(t^2+1)+\frac{1}{t+1}]dt- \int \frac{t}{t+1}dt\\ \\2\int \frac{t^4-t+t^3-t^3+t^2-t^2+t-t+1-1}{t+1}dt ~~~~~(多项式除法,凑分母倍数) \\~\\ =2\int \frac{t^3(t+1)-t^2(t+1)+t(t+1)-2(t+1)+2}{t+1}dt \\ =2\int t^3-t^2+t-2+\frac{2}{t+1}dt=\frac{1}{2}t^4-\frac{2}{3}t^3+t^2-2t+2ln|t+1|+c \\ =\frac{1}{2}x^2-\frac{2}{3}\sqrt{x^3}+x-4\sqrt{x}+4ln(\sqrt{x}+1)+c ~~~~~[lnx ,x >0] \\~ ∫x+1x3dx令t=x∫t+1t32tdt [t2=x,2tdt=dx]=2∫t+1t4dt=2∫[(t−1)(t2+1)+t+11]dt−∫t+1tdt2∫t+1t4−t+t3−t3+t2−t2+t−t+1−1dt (多项式除法,凑分母倍数) =2∫t+1t3(t+1)−t2(t+1)+t(t+1)−2(t+1)+2dt=2∫t3−t2+t−2+t+12dt=21t4−32t3+t2−2t+2ln∣t+1∣+c=21x2−32x3+x−4x+4ln(x+1)+c [lnx,x>0]
\\~
反三角函数: 反三角函数: 反三角函数:
∫ d x x x 2 − 1 令 x = s e c t ∫ s e c t ∗ t a n t s e c t ∗ t a n t d t [ ( s e c t ) ′ = s e c t ∗ t a n t ; d x = s e c t ∗ t a n t d t ] = ∫ 1 d t = t + c [ x = s e c t = 1 c o s t → t = a r c c o s 1 x ] = a r c c o s 1 x + c \int \frac{dx}{x\sqrt{x^2-1}}~\frac{令x=sect}{}~\int \frac{sect*tant}{sect*tant}dt~~[(sect)'=sect*tant;dx=sect*tantdt] \\ =\int 1dt=t+c ~~[x=sect=\frac{1}{cost} \to~t=arccos\frac{1}{x}] \\ =arccos\frac{1}{x}+c \\~ ∫xx2−1dx 令x=sect ∫sect∗tantsect∗tantdt [(sect)′=sect∗tant;dx=sect∗tantdt]=∫1dt=t+c [x=sect=cost1→ t=arccosx1]=arccosx1+c
分部积分法: 分部积分法: 分部积分法:
( u v ) ′ = u ′ v + u v ′ ( 逆运算推导分部积分 ) : (uv)'=u'v+uv' (逆运算推导分部积分): (uv)′=u′v+uv′(逆运算推导分部积分):
∫ ( u v ) ′ d x = ∫ u ′ v d x + ∫ u v ′ d x u v = ∫ v d u + ∫ u d v ∫ u d v = u v − ∫ v d u \\ \int(uv)'dx=\int u'vdx+\int uv'dx \\ uv = \int vdu+\int udv \\ \int udv =uv-\int vdu \\~ ∫(uv)′dx=∫u′vdx+∫uv′dxuv=∫vdu+∫udv∫udv=uv−∫vdu
即: ∫ u d v = u v − ∫ v d u 即:\int udv=uv-\int vdu 即:∫udv=uv−∫vdu
\\~
[ 表格法:对角相连,正负相间 ] + ( 上导下积 ) [表格法:对角相连,正负相间] +(上导下积)\\~ [表格法:对角相连,正负相间]+(上导下积)
∫ x s i n x d x \int xsinxdx ∫xsinxdx
求导 : x → 1 → 0 求导:x ~~~~~\to~~~ 1 ~~~\to~~~ 0 求导:x → 1 → 0
↘ + ↘ − ~~~~~~~~~~~~~~~~~~\searrow +~~~~~~~~~~~~~\searrow - ↘+ ↘−
积分 : s i n x → − c o s x → − s i n x 积分:sinx \to -cosx \to -sinx 积分:sinx→−cosx→−sinx
∫ x s i n x d x = − x c o s x + s i n x + c \int xsinxdx=-x cosx+sinx+c \\~ ∫xsinxdx=−xcosx+sinx+c
∫ x e x d x \int xe^xdx ∫xexdx
求导 : x → 1 → 0 求导:~x ~~~~\to~~~~~ 1 ~~~\to~~~ 0 求导: x → 1 → 0
↘ + ↘ − ~~~~~~~~~~~~~~~~~~\searrow +~~~~~~\searrow - ↘+ ↘−
积分 : e x → e x → e x 积分:e^x~~ \to~~ e^x~~\to~~~~e^x 积分:ex → ex → ex
∫ x e x d x = x e x − e x \int xe^xdx=xe^x-e^x ∫xexdx=xex−ex
\\~
记住 或 能推导 : ∫ s e c 3 x d x , ∫ c s c 3 x d x , ∫ e a x s i n ( b x ) d x , ∫ e a x c o s ( b x ) d x , ∫ s i n ( l n x ) d x , ∫ c o s ( l n x ) d x [ 令 t = l n x ] ∫ e a x s i n ( b x ) d x = 1 a 2 + b 2 ∣ ( e a x ) ′ ( s i n ( b x ) ) ′ e a x s i n ( b x ) ∣ + C [ 化成行列式 ] = 1 a 2 + b 2 ( a e a x ∗ s i n b x − e a x ∗ b c o s b x ) + C 记住~或~能推导 : \\ \int sec^3xdx,\int csc^3xdx,\int e^{ax}sin(bx)dx,\int e^{ax}cos(bx)dx,\int sin(lnx)dx,\int cos(lnx)dx~~[令t=lnx] \\~\\ \large\int e^{ax}sin(bx)dx= \frac{1}{a^2+b^2} \begin{vmatrix} (e^{ax})' & (sin(bx))' \\ e^{ax} & sin(bx) \\ \end{vmatrix} +C ~~~~~~\small[化成行列式] \\~\\ \large= \frac{1}{a^2+b^2}(ae^{ax}*sinbx-e^{ax}*bcosbx)+C \\ \\~\\~ 记住 或 能推导:∫sec3xdx,∫csc3xdx,∫eaxsin(bx)dx,∫eaxcos(bx)dx,∫sin(lnx)dx,∫cos(lnx)dx [令t=lnx] ∫eaxsin(bx)dx=a2+b21 (eax)′eax(sin(bx))′sin(bx) +C [化成行列式] =a2+b21(aeax∗sinbx−eax∗bcosbx)+C
有理函数积分 \large 有理函数积分 有理函数积分
例 1 求 ∫ x ( x + 1 ) ( x + 2 ) ( x + 3 ) d x 例1~ 求 \int \frac{x}{(x+1)(x+2)(x+3)}dx 例1 求∫(x+1)(x+2)(x+3)xdx
设原式 = ∫ ( A x + 1 + B x + 2 + C x + 3 ) d x = ∫ x ( x + 1 ) ( x + 2 ) ( x + 3 ) d x 设原式=\int(\frac{A}{x+1}+\frac{B}{x+2}+\frac{C}{x+3})dx= \int \frac{x}{(x+1)(x+2)(x+3)}dx 设原式=∫(x+1A+x+2B+x+3C)dx=∫(x+1)(x+2)(x+3)xdx
由待定系数法: A ( x + 2 ) ( x + 3 ) + B ( x + 1 ) ( x + 3 ) + C ( x + 1 ) ( x + 2 ) = x 由待定系数法:A(x+2)(x+3)+B(x+1)(x+3)+C(x+1)(x+2)=x \\~ 由待定系数法:A(x+2)(x+3)+B(x+1)(x+3)+C(x+1)(x+2)=x
[ 特殊值法 ] 令 x = − 1 , 2 A = − 1 , 即 A = − 1 2 ; 令 x = − 2 , − B = − 2 , 即 B = 2 ; 令 x = − 3 , 2 C = − 3 , 即 C = − 3 2 [特殊值法] \\ 令x=-1,2A=-1,即A=-\frac{1}{2}; \\ 令x=-2,-B=-2,即B=2; \\ 令x=-3,2C=-3,即C=-\frac{3}{2} \\ \\~ [特殊值法]令x=−1,2A=−1,即A=−21;令x=−2,−B=−2,即B=2;令x=−3,2C=−3,即C=−23
原式 = ∫ ( − 1 2 x + 1 + 2 x + 2 + − 3 2 x + 3 ) d x = − 1 2 l n ∣ x + 1 ∣ + 2 l n ∣ x + 2 ∣ − 3 2 l n ∣ x + 3 ∣ + c 原式=\large \int(\frac{-\frac{1}{2}}{x+1}+\frac{2}{x+2}+\frac{-\frac{3}{2}}{x+3})dx=-\frac{1}{2} ln|x+1|+2ln|x+2|-\frac{3}{2}ln|x+3|+c \\~ 原式=∫(x+1−21+x+22+x+3−23)dx=−21ln∣x+1∣+2ln∣x+2∣−23ln∣x+3∣+c
例 2 : 分母括号内能分解尽量分解,如 例2:分母括号内能分解尽量分解,如 例2:分母括号内能分解尽量分解,如
∫ 1 ( x + 1 ) ( x 2 − 1 ) d x = ∫ 1 ( x + 1 ) 2 ( x − 1 ) d x = ∫ [ A x + 1 + B ( x + 1 ) 2 + C x − 1 ] d x = = ∫ A ( x + 1 ) ( x − 1 ) + B ( x − 1 ) + C ( x + 1 ) 2 ( x + 1 ) 2 ( x − 1 ) d x 待定系数法: A ( x + 1 ) ( x − 1 ) + B ( x − 1 ) + C ( x + 1 ) 2 = 1 [ 特殊值法 ] 令 x = − 1 , − 2 B = 1 , B = − 1 2 ; 令 x = − 1 , 4 C = 1 , C = 1 4 ; 令 x = 0 , − A − B + C = 1 , A = − B + C − 1 = − 1 4 原式 = − 1 4 l n ∣ x + 1 ∣ + 1 2 1 x + 1 + 1 4 l n ∣ x − 1 ∣ + C \int \frac{1}{(x+1)(x^2-1)}dx=\int \frac{1}{(x+1)^2(x-1)}dx \\ =\int[\frac{A}{x+1}+\frac{B}{(x+1)^2}+\frac{C}{x-1}]dx==\int\frac{A(x+1)(x-1)+B(x-1)+C(x+1)^2}{(x+1)^2(x-1)}dx \\ 待定系数法:A(x+1)(x-1)+B(x-1)+C(x+1)^2=1 [特殊值法] \\ 令x=-1,-2B=1,B=-\frac{1}{2}; \\ 令x=-1,4C=1,C=\frac{1}{4}; \\ 令x=0,-A-B+C=1,A=-B+C-1=-\frac{1}{4} 原式=-\frac{1}{4}ln|x+1|+\frac{1}{2}\frac{1}{x+1}+\frac{1}{4}ln|x-1|+C \\~ ∫(x+1)(x2−1)1dx=∫(x+1)2(x−1)1dx=∫[x+1A+(x+1)2B+x−1C]dx==∫(x+1)2(x−1)A(x+1)(x−1)+B(x−1)+C(x+1)2dx待定系数法:A(x+1)(x−1)+B(x−1)+C(x+1)2=1[特殊值法]令x=−1,−2B=1,B=−21;令x=−1,4C=1,C=41;令x=0,−A−B+C=1,A=−B+C−1=−41原式=−41ln∣x+1∣+21x+11+41ln∣x−1∣+C
最简时分母项中幂大于 1 ,依据有理函数分解原则 ( 能互相抵消成分子必须具备的可能 ) ∫ 1 ( x + 1 ) ( x 2 + 1 ) d x = ∫ A x + 1 + B x + C x 2 + 1 d x [ ← 此题重点处 ] 待定系数法 ( 通分 ) : A ( x 2 + 1 ) + ( B x + C ) ( x + 1 ) = 1 A x 2 + A + B x 2 + B x + C x + C = 1 ( A + B ) x 2 + ( B + C ) x + A + C = 1 则 A + B = 0 , B + C = 0 , A + C = 1 即 C = 1 2 , B = − 1 2 , A = 1 2 原式 = ∫ 1 2 x + 1 + − 1 2 x + 1 2 x 2 + 1 d x = 1 2 ∫ 1 x + 1 + − x + 1 x 2 + 1 d x = 1 2 ∫ 1 x + 1 + 1 x 2 + 1 d x − 1 2 ∗ 1 2 ∫ 1 x 2 + 1 d ( x 2 + 1 ) = 1 2 l n ∣ 1 + x ∣ + 1 2 a r c t a n x + − 1 4 l n ( x 2 + 1 ) + c 最简时分母项中幂大于1,依据有理函数分解原则(能互相抵消成分子必须具备的可能) \\~ \large \int \frac{1}{(x+1)(x^2+1)}dx=\int \frac{A}{x+1}+\frac{Bx+C} {x^2+1}dx \small[\leftarrow 此题重点处]\\~\\ \small待定系数法(通分):\\ A(x^2+1)+(Bx+C)(x+1)=1 \\ Ax^2+A+Bx^2+Bx+Cx+C=1 \\ (A+B)x^2+(B+C)x+A+C=1 \\ 则A+B=0,B+C=0,A+C=1 即C=\frac{1}{2},B=-\frac{1}{2},A=\frac{1}{2} \\ 原式=\large\int \frac{\frac{1}{2}}{x+1}+\frac{-\frac{1}{2}x+\frac{1}{2}}{x^2+1}dx=\frac{1}{2}\int \frac{1}{x+1}+\frac{-x+1}{x^2+1}dx \\ =\frac{1}{2}\int \frac{1}{x+1}+\frac{1}{x^2+1}dx-\frac{1}{2}*\frac{1}{2}\int\frac{1}{x^2+1}d(x^2+1) \\ =\frac{1}{2}ln|1+x|+\frac{1}{2}arctanx+ -\frac{1}{4}ln(x^2+1)+c \\~ 最简时分母项中幂大于1,依据有理函数分解原则(能互相抵消成分子必须具备的可能) ∫(x+1)(x2+1)1dx=∫x+1A+x2+1Bx+Cdx[←此题重点处] 待定系数法(通分):A(x2+1)+(Bx+C)(x+1)=1Ax2+A+Bx2+Bx+Cx+C=1(A+B)x2+(B+C)x+A+C=1则A+B=0,B+C=0,A+C=1即C=21,B=−21,A=21原式=∫x+121+x2+1−21x+21dx=21∫x+11+x2+1−x+1dx=21∫x+11+x2+11dx−21∗21∫x2+11d(x2+1)=21ln∣1+x∣+21arctanx+−41ln(x2+1)+c
三角函数积分 \large 三角函数积分 \\~ 三角函数积分
∫ s i n 2 x d x 、 ∫ c o s 2 x d x 偶数次幂,降幂 \int sin^2xdx、\int cos^2xdx偶数次幂,降幂 ∫sin2xdx、∫cos2xdx偶数次幂,降幂
∫ s i n 2 x d x = 1 2 ∫ 1 − c o s 2 x 2 d 2 x = 1 2 x − 1 4 sin 2 x + c [ 求导检查正确性 ] \int sin^2xdx=\frac{1}{2}\int \frac{1-cos2x}{2}d2x=\frac{1}{2}x-\frac{1}{4}\sin2x+c ~~[求导检查正确性]~~\\~ ∫sin2xdx=21∫21−cos2xd2x=21x−41sin2x+c [求导检查正确性]
∫ s i n 3 x d x 、 ∫ c o s 3 x d x 奇数次幂凑微分 \int sin^3xdx、\int cos^3xdx奇数次幂凑微分 ∫sin3xdx、∫cos3xdx奇数次幂凑微分
∫ s i n 3 x d x = − ∫ s i n 2 x d c o s x = − ∫ ( 1 − c o s 2 x ) d c o s x = ∫ ( c o s 2 x − 1 ) d c o s x = 1 3 c o s 3 x − c o s x + c \int sin^3xdx=-\int sin^2xdcosx=-\int (1-cos^2x)dcosx=\int (cos^2x-1)dcosx=\frac{1}{3}cos^3x-cosx+c \\~ ∫sin3xdx=−∫sin2xdcosx=−∫(1−cos2x)dcosx=∫(cos2x−1)dcosx=31cos3x−cosx+c
万能替换公式: 万能替换公式: 万能替换公式:
令 u = t a n x 2 → x = 2 a r c t a n u , d x = 2 d u 1 + u 2 令\large u=tan\frac{x}{2} \to x=2arctanu ,~~dx=\frac{2du}{1+u^2} \\~ 令u=tan2x→x=2arctanu, dx=1+u22du
s i n x = 2 t a n x 2 1 + t a n 2 x 2 = 2 u 1 + u 2 c o s x = 1 − t a n 2 x 2 1 + t a n 2 x 2 = 1 − u 2 1 + u 2 sinx=\frac{2tan\frac{x}{2}}{1+tan^2\frac{x}{2}}=\frac{2u}{1+u^2} \\~\\ cosx=\frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}=\frac{1-u^2}{1+u^2}\\~\\~ sinx=1+tan22x2tan2x=1+u22u cosx=1+tan22x1−tan22x=1+u21−u2
∫ 1 1 + s i n x + c o s x d x = ∫ 2 d u 1 + u 2 1 + 2 u 1 + u 2 + 1 − u 2 1 + u 2 = 2 2 + 2 u d u = 1 1 + u d u = l n ∣ 1 + u ∣ + c = l n ∣ 1 + t a n x 2 ∣ + c \large\int\frac{1}{1+sinx+cosx}dx=\int \frac{\frac{2du}{1+u^2}}{1+\frac{2u}{1+u^2}+\frac{1-u^2}{1+u^2}}=\frac{2}{2+2u}du=\frac{1}{1+u}du=ln|1+u|+c=ln|1+tan\frac{x}{2}|+c ∫1+sinx+cosx1dx=∫1+1+u22u+1+u21−u21+u22du=2+2u2du=1+u1du=ln∣1+u∣+c=ln∣1+tan2x∣+c
递推+重点补充
不定积分 + C , 定积分没有常数 C \large \red{不定积分+C,定积分没有常数C} 不定积分+C,定积分没有常数C