【机器学习】【KMeans聚类分析实战】用户分群聚类详解——SSE、CH 指数、SC全解析,实战电信客户分群案例

1.引言

在实际数据分析中,聚类算法常用于客户分群、图像分割等场景。如何确定聚类数 k 是聚类分析中的关键问题之一。本文将以“用户分群”为例,展示如何通过 KMeans 聚类,利用 SSE(误差平方和,也称 Inertia)、Calinski-Harabasz 指数(CH Score)和 Silhouette Score(轮廓系数)来判断最佳的聚类数。你将看到三幅图表,每个图表都揭示了不同的聚类评价指标,帮助你综合判断哪一个 k 值最合理。


2. 聚类概念


3. 聚类指标介绍

SSE (Inertia):反映了所有样本与其所属簇中心距离平方和。随着聚类数 k 增加,SSE 会下降;但在某个 k 值之后,SSE 的下降速度会明显减缓,这就是所谓的“肘部”,通常这个拐点附近的 k 值较为合理。

Calinski-Harabasz Score (CH Score):衡量类间离散度和类内紧凑度之比,数值越大表示聚类结果越好。通常在最佳 k 附近,CH Score 会达到峰值。

Silhouette Score (轮廓系数):取值范围为 -1 到 1,值越高说明聚类结构越明显,即同一簇内部相似度高,而不同簇之间相似度低。最佳 k 往往对应于轮廓系数较高的值。



4. 代码详解

以下代码分为两个函数:

dm01_聚类分析用户群:遍历 k=2~10,记录并绘制 SSE、CH Score 和 Silhouette Score 曲线。

dm02_聚类分析用户群:固定 k=5 进行聚类,并将聚类结果可视化。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as snsfrom sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score, calinski_harabasz_score
from sklearn.model_selection import train_test_splitdef dm01_聚类分析用户群():"""函数功能:1. 读取 data/customers.csv,取第 3 列和第 4 列作为特征 (Annual Income, Spending Score)。2. 通过循环 k in [2, 10]:- 训练 KMeans(k)- 记录 SSE (inertia_)- 记录 Silhouette Score- (可选) 记录 Calinski-Harabasz Score3. 绘制 SSE 曲线(肘部法)和 Silhouette Score 曲线,以辅助确定最优聚类数。"""# 1. 读取数据dataset = pd.read_csv('data/Clustering_Methods/customers.csv')dataset.info()  # 查看数据的列、类型、缺失值等print('【前 5 行数据】:\n', dataset.head(5))# 2. 取特征列:假设第 3, 4 列分别为 Annual Income, Spending ScoreX = dataset.iloc[:, [3, 4]]print('【X 特征前 5 行】:\n', X.head(5))# 3. 通过循环不同的聚类数 k,记录 SSE 和 Silhouette Score (可选 CH)sse_list = []        # 存储 SSEsil_list = []        # 存储 Silhouette Scorech_list = []         # (可选)存储 Calinski-Harabasz Scorek_values = range(2, 11)  # k 从 2 到 10for k in k_values:# 实例化 KMeansmy_kmeans = KMeans(n_clusters=k, max_iter=300, random_state=0)my_kmeans.fit(X)  # 训练# SSE (Inertia) - 簇内误差平方和sse_list.append(my_kmeans.inertia_)# 预测标签labels = my_kmeans.predict(X)# Silhouette Score (轮廓系数)sil_value = silhouette_score(X, labels)sil_list.append(sil_value)# (可选) Calinski-Harabasz 指数ch_value = calinski_harabasz_score(X, labels)ch_list.append(ch_value)# 4. 绘制 SSE 曲线(肘部法)plt.figure(figsize=(15, 4))plt.subplot(1, 3, 1)plt.plot(k_values, sse_list, marker='o', color='red')plt.title('Elbow Method (SSE vs k)')plt.xlabel('Number of Clusters (k)')plt.ylabel('SSE (Inertia)')plt.grid(True)# 5. 绘制 Silhouette Score 曲线plt.subplot(1, 3, 2)plt.plot(k_values, sil_list, marker='o', color='blue')plt.title('Silhouette Score vs k')plt.xlabel('Number of Clusters (k)')plt.ylabel('Silhouette Score')plt.grid(True)# (可选) 绘制 Calinski-Harabasz Score 曲线plt.subplot(1, 3, 3)plt.plot(k_values, ch_list, marker='o', color='green')plt.title('Calinski-Harabasz Score vs k')plt.xlabel('Number of Clusters (k)')plt.ylabel('CH Score')plt.grid(True)plt.tight_layout()plt.show()print("\n【提示】可综合观察 SSE 肘部位置、Silhouette Score 高点以及 CH Score 峰值,来判断最优 k。")def dm02_聚类分析用户群():"""函数功能:1. 读取 data/customers.csv,取第 3 列和第 4 列作为特征 (Annual Income, Spending Score)。2. 使用 KMeans(k=5) 进行聚类 (可根据 dm01_函数观察后选择最优 k)。3. 可视化聚类结果,每个簇用不同颜色散点表示,并标注聚类中心。"""# 1. 读取数据dataset = pd.read_csv('data/Clustering_Methods/customers.csv')# 假设第 3, 4 列分别为 Annual Income, Spending ScoreX = dataset.iloc[:, [3, 4]]# 2. 实例化 KMeans,指定 n_clusters=5kmeans = KMeans(n_clusters=5, max_iter=300, random_state=0)kmeans.fit(X)# 3. 预测标签y_kmeans = kmeans.predict(X)# 4. 可视化# 每个簇用不同颜色散点plt.figure(figsize=(8, 5))plt.scatter(X.values[y_kmeans == 0, 0], X.values[y_kmeans == 0, 1],s=100, c='red', label='Cluster 0')plt.scatter(X.values[y_kmeans == 1, 0], X.values[y_kmeans == 1, 1],s=100, c='blue', label='Cluster 1')plt.scatter(X.values[y_kmeans == 2, 0], X.values[y_kmeans == 2, 1],s=100, c='green', label='Cluster 2')plt.scatter(X.values[y_kmeans == 3, 0], X.values[y_kmeans == 3, 1],s=100, c='cyan', label='Cluster 3')plt.scatter(X.values[y_kmeans == 4, 0], X.values[y_kmeans == 4, 1],s=100, c='magenta', label='Cluster 4')# 画出聚类中心(黑色大点)plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],s=300, c='black', marker='X', label='Centroids')plt.title('Customer Clusters')plt.xlabel('Annual Income (k$)')plt.ylabel('Spending Score (1-100)')plt.legend()plt.show()# 可选:查看聚类后的指标,如 SSE, Silhouette 等sse = kmeans.inertia_labels = kmeans.labels_sil_value = silhouette_score(X, labels)print(f"SSE: {sse:.2f}")print(f"Silhouette Score: {sil_value:.2f}")if __name__ == "__main__":print("=== 第一步: 评估不同 k 的聚类效果 ===")dm01_聚类分析用户群()print("\n=== 第二步: 以 k=5 聚类并可视化 ===")dm02_聚类分析用户群()

代码输出:
 

 


代码解释

1. dm01_聚类分析用户群 函数

数据读取与预览

读取 data/Clustering_Methods/customers.csv 文件,并用 info() 和 head() 查看数据基本情况。

特征选择

假设第 3 列和第 4 列分别为“年收入”和“消费得分”,并打印前5行数据。

遍历不同聚类数 k

在 k 从 2 到 10 的范围内,依次训练 KMeans 模型,并记录 SSE(inertia_)、Silhouette Score 和 Calinski-Harabasz 指数。

绘制图表

使用 3 个子图分别展示 SSE 曲线、轮廓系数曲线、CH 指数曲线,帮助你直观观察:

SSE 曲线:观察“肘部”位置,即 SSE 降低变缓的 k 值;

轮廓系数曲线:观察 k 值下哪个聚类结果的轮廓系数最高;

CH 指数曲线:查看哪个 k 值下类间分离度最佳。

综合这三个指标,你可以判断哪个 k 值可能是最优的。如果三个指标都在某个 k 值附近表现较好,则该 k 值值得选择。

2. dm02_聚类分析用户群 函数

使用 k=5 进行聚类

假设根据前一步的指标,k=5 是较优选择,直接训练 KMeans 模型。

结果可视化

对不同簇(Cluster 0 到 Cluster 4)用不同颜色绘制散点图,并用黑色大“X”标注聚类中心。图表标题、坐标轴均使用中文,便于理解。

输出指标

打印 SSE 和 Silhouette Score,帮助你验证模型效果。

结论

通过以上两个步骤,你可以:

先评估:利用多个聚类指标确定最佳聚类数 k(通过肘部法和峰值对比);

后可视化:固定 k 值进行聚类,并直观展示聚类结果及聚类中心。

如果你对聚类结果满意,模型就可以应用到后续的用户分群、个性化营销或其他业务场景中。 


5.总结

本文通过一个用户分群的案例详细介绍了如何使用 KMeans 聚类算法确定最佳聚类数 k,并结合 SSE、Silhouette Score 和 Calinski-Harabasz 指数辅助决策。希望这篇文章能帮助你理解聚类算法的关键指标以及如何通过图形直观地选择最佳 k 值。如果你觉得文章对你有帮助,请点赞、收藏、转发,并关注我的博客,分享更多数据科学的精彩内容!


参考文献:

1. Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651-666.

2. Kaufman, L., & Rousseeuw, P. J. (2009). Finding Groups in Data: An Introduction to Cluster Analysis. Wiley-Interscience.

3. scikit-learn 官方文档 – Clustering: https://scikit-learn.org/stable/modules/clustering.html

这篇文章通过代码示例和详细注释,帮助读者学会如何利用多种聚类评价指标判断最佳聚类数,并进行结果可视化。希望你喜欢这篇文章,欢迎大佬们点赞,关注,收藏,转发,也欢迎各位读者在评论区讨论和交流!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/23131.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

20-R 绘图 - 饼图

R 绘图 - 饼图 R 语言提供来大量的库来实现绘图功能。 饼图,或称饼状图,是一个划分为几个扇形的圆形统计图表,用于描述量、频率或百分比之间的相对关系。 R 语言使用 pie() 函数来实现饼图,语法格式如下: pie(x, l…

搭建 Hadoop 3.3.6 伪分布式

搭建 Hadoop 3.3.6 伪分布式 IP 192.168.157.132 初始化操作 更改yum源 # 1_1.安装Wget yum install wget# 1_2.备份CentOS-Base.repo文件 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo_bak# 2.下载阿里yum源配置 wget -O /etc/yum.repos.d/Cen…

python电影数据分析及可视化系统建设

博主介绍:✌程序猿徐师兄、8年大厂程序员经历。全网粉丝15w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…

手机壁纸设计中,金属质感字体可以为壁纸增添独特的视觉效果和高端感

在手机壁纸设计中,金属质感字体可以为壁纸增添独特的视觉效果和高端感。以下是一些关于金属质感字体在手机壁纸设计中的应用建议和案例分析: 1. 金属质感字体的特点 视觉冲击力强:金属质感字体具有独特的光泽和质感,能够在视觉上…

使用ezuikit-js封装一个对接摄像头的组件

ezuikit-js 是一个基于 JavaScript 的视频播放库,主要用于在网页中嵌入实时视频流播放功能。它通常用于与支持 RTSP、RTMP、HLS 等协议的摄像头或视频流服务器进行交互,提供流畅的视频播放体验。 主要功能 多协议支持:支持 RTSP、RTMP、HLS …

PHP post 数据丢失问题

max_input_vars是PHP配置选项之一,用于设置一个请求中允许的最大输入变量数。它指定了在处理POST请求或者通过URL传递的参数时,PHP脚本能够接收和处理的最大变量数量。 max_input_vars的默认值是1000,意味着一个请求中最多可以包含1000个输入…

jenkins docker容器中安装python3.9环境

在运维过程中,不过避免的需要使用到python,在jenkins 的docker容器中,是没有python环境的,需要我们自己手动安装一下。 查看是否有工具apt-get 直接输入apt-get 然后回车,出现以下内容,表示支持apt-get命令…

《Spring实战》(第6版) 保护Spring

第1部分 Spring基础 第4章 使用非关系型数据 关系型数据库一直是首选,近年来"NoSQL"数据库提供了数据存储的不同概念和结构。 SpringData为很多NoSQL数据库提供了支持,包括MongoDB、Cassandra、Couchbase、Neo4j、Redis等,无论选…

SQLMesh 系列教程7- 详解 seed 模型

SQLMesh 是一个强大的数据建模和管道管理工具,允许用户通过 SQL 语句定义数据模型并进行版本控制。Seed 模型是 SQLMesh 中的一种特殊模型,主要用于初始化和填充基础数据集。它通常包含静态数据,如参考数据和配置数据,旨在为后续的…

【JavaEE】-- 多线程(初阶)2

文章目录 3.线程的状态3.1观察线程的所有状态3.2线程状态和状态转移的意义 4.多线程带来的的风险-线程安全 (重点)4.1观察线程不安全4.2 线程不安全的原因4.2.1 线程调度是随机的4.2.2 修改共享数据4.2.3 原子性4.2.4 内存可见性4.2.5 指令重排序 4.3解决之前的线程不安全问题 …

安卓系统远程控制电脑方法,手机远控教程,ToDesk工具

不知道大家有没有觉得手机、平板虽然很好用,却也仍存在有很多替代不了电脑的地方。就比如说撰写文档、做数据报表啥的就不如PC端操作般方便,就跟别说PS修图、AE视频剪辑等需高性能设备来带动才易用的了。 好在也是有对策可解决,装个ToDesk远程…

机器学习(李宏毅)——RL(强化学习)

一、前言 本文章作为学习2023年《李宏毅机器学习课程》的笔记,感谢台湾大学李宏毅教授的课程,respect!!! 二、大纲 What is RL?Three steps in MLPolicy GradientActor-CriticReward Shaping 三、What …

【Go】Go wire 依赖注入

1. wire 简介 wire 是一个 Golang 的依赖注入框架(类比 Spring 框架提供的依赖注入功能) ⭐ 官方文档:https://github.com/google/wire 这里关乎到编程世界当中一条好用的设计原则:A用到了B,那么B一定是通过依赖注入的…

《动手学机器人学》笔记

目录 0.介绍1.概述|空间位置、姿态的描述(33)|《动手学机器人学》2.(2)-Robotics Toolbox①(V10.4)3.齐次坐标与变换矩阵4.一般形式的旋转变换矩阵5.(轴角法)…

【蓝桥杯单片机】第十三届省赛第二场

一、真题 二、模块构建 1.编写初始化函数(init.c) void Cls_Peripheral(void); 关闭led led对应的锁存器由Y4C控制关闭蜂鸣器和继电器 2.编写LED函数(led.c) void Led_Disp(unsigned char ucLed); 将ucLed取反的值赋给P0 开启锁存器 关闭锁存…

大语言模型基础

简介 AI大模型是“人工智能预训练大模型”的简称,包含了“预训练”和“大模型”两层含义,二者结合产生了一种新的人工智能模式,即模型在大规模数据集上完成了预训练后无需微调,或仅需要少量数据的微调,就能直接支撑各…

java Web

1.JavaWeb开发 前面的学习javase开发,而javaweb开发需要服务器和网页。 具备: java mysql jdbc htmlcssjs。 web服务器: tomcat服务器. 部署项目。 https://tomcat.apache.org/download-80.cgi 解压软件压缩包即可 不要放在中文目录和特殊符号的目录下 启动tomcat服…

SOME/IP--协议英文原文讲解12(完结)

前言 SOME/IP协议越来越多的用于汽车电子行业中,关于协议详细完全的中文资料却没有,所以我将结合工作经验并对照英文原版协议做一系列的文章。基本分三大块: 1. SOME/IP协议讲解 2. SOME/IP-SD协议讲解 3. python/C举例调试讲解 4.3 Compa…

光明谷推出AT指令版本的蓝牙音箱SOC 开启便捷智能音频开发新体验

前言 在蓝牙音箱市场竞争日益激烈的当下,开发一款性能卓越且易于上手的蓝牙音箱,成为众多厂商追求的目标。而光明谷科技有限公司推出的 AT 指令版本的蓝牙音箱 SOC,无疑为行业带来了全新的解决方案,以其诸多独特卖点,迅…

STM32——HAL库开发笔记22(定时器3—呼吸灯实验)(参考来源:b站铁头山羊)

本文利用前几节所学知识来实现一个呼吸灯实验:两颗led灯交替呼吸。 一、STM32CubeMX配置 step1:配置调试接口 step2:配置定时器 定时器1位于APB2总线上,如上图所示。 step3:配置时基单元 按照下图配置 时钟来源配置…