BLE Mesh蓝牙组网技术详细解析之Access Layer访问层(六)

目录

一、什么是BLE Mesh Access Layer访问层?

二、Access payload

2.1 Opcode

三、Access layer behavior

3.1 Access layer发送消息的流程

3.2 Access layer接收消息的流程

3.3 Unacknowledged and acknowledged messages

3.3.1 Unacknowledged message

3.3.2 Acknowledged message

3.4 Example message sequence charts

3.4.1 Acknowledged Get

3.4.2 Acknowledged Set

3.4.3 Unacknowledged Set

3.4.4 Acknowledged set with periodic publishing

四、资料获取


一、什么是BLE Mesh Access Layer访问层?

BLE Mesh Access Layer是蓝牙Mesh协议栈的一部分,它主要负责以下几个方面的功能

  • 定义应用数据的格式,例如Opcode和参数字段。
  • 定义并控制在上层传输层中执行的应用数据的加密和解密,使用AppKey或DeviceKey作为密钥。
  • 在将数据上传到模型层之前,对来自上层传输层的数据进行验证,判断其是否适用于该网络和应用,例如检查地址和AppKey是否匹配。
  • 在将数据下发到上层传输层之前,根据模型层的指令,填充源地址、目的地址、TTL等字段,以及设置重传参数。

二、Access payload

Field Name

Size (octets)

Notes

Opcode

1, 2, or 3

Operation Code

Parameters

0 to 379

Application Parameters

  • Opcode:1字节、2字节或3字节的操作码,用于标识消息的类型和含义。
  • Parameters:一个可变长度的参数字段,用于携带消息的具体内容。参数字段的长度由Opcode和上层传输层的PDU的长度共同决定,最大为379字节,取决于Opcode的长度

一个access payload最多可以发送32个片段,每个片段12字节。这意味着最大值 包括TransMIC在内的字节数是384

对于4字节的TransMIC,access payload最大大小是380字节,因此对于单个字节的操作码,参数字段最多可以达到379字节。对于2字节的操作码,参数字段最多可以有378个字节。对于一个3字节的操作码,parameters字段最多可以有377个字节。

传输层可以将消息分割成多段PDU,以便在网络层上传输。下表显示了根据包的数量和TransMIC的大小而定的最大有用的应用包大小。

Number of Packets

Maximum useful access payload size (octets)

32 bit TransMIC

64 bit TransMIC

1

11 (unsegmented)

n/a

1

8 (segmented)

4 (segmented)

2

20

16

3

32

28

n

(n×12)-4

(n×12)-8

32

380

376

2.1 Opcode

  • 1字节操作码:由SIG定义,用于标准的模型消息,例如Generic OnOff Set,Generic Level Get等。1字节操作码的第一位为0,剩下的7位表示具体的操作码值。
  • 2字节操作码:由SIG定义,用于扩展的模型消息,例如Scene Store,Scene Delete等。2字节操作码的第一位为1,第二位为0,剩下的14位表示具体的操作码值。
  • 3字节操作码:由供应商定义,用于自定义的模型消息,例如Vendor Model Status,Vendor Model Indication等。3字节操作码的第一位为1,第二位为1。其中的2个字节被指定为厂商ID(CID),该部分在表中以“z”表示。在整个mesh网络中,每个厂商ID最多支持64个厂商操作码。用户可用的只有6位(xxxxxx),因此总共是64个操作码。

Opcode Format

Notes

0xxxxxxx (excluding 01111111)

1-octet Opcodes

01111111

Reserved for Future Use

10xxxxxx xxxxxxxx

2-octet Opcodes

11xxxxxx zzzzzzzz zzzzzzzz

3-octet Opcodes

三、Access layer behavior

3.1 Access layer发送消息的流程

  • 首先,访问层接收到来自模型层的消息,消息包含操作码(Opcode)和有效载荷(Payload)。操作码是用于标识消息的类型和含义的一个字节或多个字节的值,有效载荷是消息的主要内容,包含了模型的状态值、参数、属性等信息。
  • 然后,访问层根据下发来的模型ID找到对应的存储信息,包括源地址(SRC)、目的地址(DST)、应用密钥(AppKey)等。源地址是该模型对应的元素的单播地址,目的地址是该模型设置的发布地址,应用密钥是该模型绑定的用于加密和解密的密钥。
  • 接着,访问层将消息和存储信息一起传递给上层传输层,上层传输层会根据应用密钥对消息进行加密和认证,生成一个传输层数据单元(Upper Transport PDU),并为每个消息分配一个序列号(SEQ)用于防护中继/重放攻击。
  • 然后,上层传输层将传输层数据单元和其他信息传递给下层传输层,下层传输层会根据消息的长度决定是否需要对消息进行分段,如果需要分段,会生成多个分段的传输层数据单元(Segmented Upper Transport PDU),并为每个分段分配一个分段索引(SEG)用于重组消息。
  • 接着,下层传输层将分段的传输层数据单元和其他信息传递给网络层,网络层会根据网络密钥(NetKey)对分段的传输层数据单元进行加密和混淆,生成一个网络层数据单元(Network PDU),并为每个网络层数据单元分配一个网络标识符(IVI)用于识别网络。
  • 然后,网络层将网络层数据单元和其他信息传递给承载层,承载层会根据承载类型(Advertising Bearer或GATT Bearer)对网络层数据单元进行封装,生成一个承载层数据单元(Bearer PDU),并通过底层的BLE协议栈将承载层数据单元发送出去。
  • 最后,承载层会根据消息的类型(Acknowledged Message或Unacknowledged Message)决定是否需要对消息进行重传,如果需要重传,会根据重传参数(重传次数、重传间隔等)进行重传,直到收到应答消息或达到重传次数上限为止。
/*源自开源协议栈NimBLE*/
static int model_send(struct bt_mesh_model *model,struct bt_mesh_net_tx *tx, bool implicit_bind,struct os_mbuf *msg,const struct bt_mesh_send_cb *cb, void *cb_data)
{BT_DBG("net_idx 0x%04x app_idx 0x%04x dst 0x%04x", tx->ctx->net_idx,tx->ctx->app_idx, tx->ctx->addr);BT_DBG("len %u: %s", msg->om_len, bt_hex(msg->om_data, msg->om_len));if (!bt_mesh_is_provisioned()) {BT_ERR("Local node is not yet provisioned");return -EAGAIN;}if (net_buf_simple_tailroom(msg) < 4) {BT_ERR("Not enough tailroom for TransMIC");return -EINVAL;}if (msg->om_len > BT_MESH_TX_SDU_MAX - 4) {BT_ERR("Too big message");return -EMSGSIZE;}if (!implicit_bind && !model_has_key(model, tx->ctx->app_idx)) {BT_ERR("Model not bound to AppKey 0x%04x", tx->ctx->app_idx);return -EINVAL;}return bt_mesh_trans_send(tx, msg, cb, cb_data);
}int bt_mesh_model_send(struct bt_mesh_model *model,struct bt_mesh_msg_ctx *ctx,struct os_mbuf *msg,const struct bt_mesh_send_cb *cb, void *cb_data)
{struct bt_mesh_net_tx tx = {.sub = bt_mesh_subnet_get(ctx->net_idx),.ctx = ctx,.src = bt_mesh_model_elem(model)->addr,.xmit = bt_mesh_net_transmit_get(),.friend_cred = 0,};return model_send(model, &tx, false, msg, cb, cb_data);
}

3.2 Access layer接收消息的流程

  • 首先,访问层从承载层接收到来自底层低功耗蓝牙协议栈的消息,消息包含操作码(Opcode)和有效载荷(Payload)。操作码是用于标识消息的类型和含义的一个字节或多个字节的值,有效载荷是消息的主要内容,包含了模型的状态值、参数、属性等信息。
  • 然后,访问层根据消息中的网络密钥索引(NetKeyIndex)和应用密钥索引(AppKeyIndex)找到对应的网络密钥(NetKey)和应用密钥(AppKey),并将消息传递给上层传输层。上层传输层会根据网络密钥和应用密钥对消息进行解密和认证,还原出原始的操作码和有效载荷。
  • 接着,访问层根据消息的目的地址(DST)字段,找到当前节点中订阅了该地址或者元素地址为该地址的所有模型,再判断该消息与该模型是否绑定了同一个应用密钥,满足了要求再上报至模型层,模型再进行操作码和有效载荷的检查。
/*BLE Mesh访问层接收数据子函数*/
/*源自开源协议栈NimBLE*/
void bt_mesh_model_recv(struct bt_mesh_net_rx *rx, struct os_mbuf *buf)
{struct bt_mesh_model *models, *model;const struct bt_mesh_model_op *op;u32_t opcode;u8_t count;int i;BT_DBG("app_idx 0x%04x src 0x%04x dst 0x%04x", rx->ctx.app_idx,rx->ctx.addr, rx->ctx.recv_dst);BT_DBG("len %u: %s", buf->om_len, bt_hex(buf->om_data, buf->om_len));if (get_opcode(buf, &opcode) < 0) {BT_WARN("Unable to decode OpCode");return;}BT_DBG("OpCode 0x%08x", (unsigned) opcode);for (i = 0; i < dev_comp->elem_count; i++) {struct bt_mesh_elem *elem = &dev_comp->elem[i];struct net_buf_simple_state state;/* SIG models cannot contain 3-byte (vendor) OpCodes, and* vendor models cannot contain SIG (1- or 2-byte) OpCodes, so* we only need to do the lookup in one of the model lists.*/if (BT_MESH_MODEL_OP_LEN(opcode) < 3) {models = elem->models;count = elem->model_count;} else {models = elem->vnd_models;count = elem->vnd_model_count;}op = find_op(models, count, opcode, &model);if (!op) {BT_DBG("No OpCode 0x%08x for elem %d", opcode, i);continue;}if (!model_has_key(model, rx->ctx.app_idx)) {continue;}if (!model_has_dst(model, rx->ctx.recv_dst)) {continue;}if (buf->om_len < op->min_len) {BT_ERR("Too short message for OpCode 0x%08x", opcode);continue;}/* The callback will likely parse the buffer, so* store the parsing state in case multiple models* receive the message.*/net_buf_simple_save(buf, &state);op->func(model, &rx->ctx, buf);net_buf_simple_restore(buf, &state);}
}

3.3 Unacknowledged and acknowledged messages

  • 消息的类型:消息可以分为需要应答的消息(Acknowledged Message)和不需要应答的消息(Unacknowledged Message)。需要应答的消息要求接收端回复一个状态消息作为应答,不需要应答的消息则不需要回复。
  • 消息的目标地址:消息可以发送到单播地址(Unicast Address)、组播地址(Group Address)或虚拟地址(Virtual Address)。目标地址决定了消息的发布和订阅方式,以及消息的中继和重传机制。
  • 消息的操作码(Opcode):操作码是用于标识消息的类型和含义的一个字节或多个字节的值。操作码的长度和值由消息的第一位和第二位决定,操作码的值可以是预定义的或者厂商自定义的。
  • 消息的有效载荷(Payload):有效载荷是消息的主要内容,包含了模型的状态值、参数、属性等信息。有效载荷的长度和格式由操作码和模型定义决定。

3.3.1 Unacknowledged message

unAcknowledged Message是一种不需要接收端回复应答的消息。它的定义如下

  • unAcknowledged Message的操作码(Opcode)的第一位(bit 7)必须为0,表示操作码的长度为一个字节。
  • unAcknowledged Message的有效载荷(Payload)的长度和格式由操作码和模型定义决定,通常包含了目标状态(Target State)或查询参数(Query Parameters)等信息。
  • unAcknowledged Message的发送端(Client Model)会在发送消息后不等待接收端(Server Model)的应答消息(Status Message),而是直接结束消息发送过程。

3.3.2 Acknowledged message

Acknowledged Message是一种需要接收端回复一个状态消息作为应答的消息。它的定义如下

  • Acknowledged Message的操作码(Opcode)的第一位(bit 7)必须为0,表示操作码的长度为一个字节。
  • Acknowledged Message的有效载荷(Payload)的长度和格式由操作码和模型定义决定,通常包含了目标状态(Target State)或查询参数(Query Parameters)等信息。
  • Acknowledged Message的发送端(Client Model)会在发送消息后等待一段时间(Acknowledged Message Timeout),如果在这段时间内没有收到接收端(Server Model)的应答消息(Status Message),则会重发消息,直到收到应答消息或达到重发次数上限(Acknowledged Message Retransmissions)为止。

3.4 Example message sequence charts

3.4.1 Acknowledged Get

Acknowledged Get是一种用于从服务器端请求状态信息的消息类型。它属于Acknowledged MSG的一种,也就是说,当服务器端收到这个消息后,需要回复一个对应的Status消息,告诉客户端当前的状态值。这样可以保证客户端和服务器端的状态同步,也可以避免消息丢失或重复的问题。

例如,如果客户端想要知道一个灯的亮度,它可以发送一个Generic Level Get消息,这是一种Acknowledged Get消息,它的Opcode是0x8205。服务器端收到这个消息后,会回复一个Generic Level Status消息,它的Opcode是0x8206,它的Payload包含了当前的亮度值。

3.4.2 Acknowledged Set

Acknowledged Set是一种用于向服务器端发送状态设置请求的消息类型。它也属于Acknowledged MSG的一种,也就是说,当服务器端收到这个消息后,需要回复一个对应的Status消息,告诉客户端状态是否设置成功。这样可以保证客户端和服务器端的状态同步,也可以避免消息丢失或重复的问题。

例如,如果客户端想要设置一个灯的亮度,它可以发送一个Generic Level Set消息,这是一种Acknowledged Set消息,它的Opcode是0x8207。它的Payload包含了要设置的亮度值和一个可选的Transition Time和Delay参数,用于控制灯的渐变效果。服务器端收到这个消息后,会回复一个Generic Level Status消息,它的Opcode是0x8206,它的Payload包含了当前的亮度值。

3.4.3 Unacknowledged Set

Unacknowledged Set是一种用于向服务器端发送状态设置请求的消息类型。它不属于Acknowledged MSG,也就是说,当服务器端收到这个消息后,不需要回复一个对应的Status消息,也不会把当前状态的改变后的结果通过Publish地址向四周广播。这样可以减少网络层的负载,提高传输效率,但也可能导致客户端和服务器端的状态不同步,或者消息丢失或重复的问题。

例如,如果客户端想要设置一个灯的亮度,它可以发送一个Generic Level Set Unacknowledged消息,这是一种Unacknowledged Set消息,它的Opcode是0x8208。它的Payload包含了要设置的亮度值和一个可选的Transition Time和Delay参数,用于控制灯的渐变效果。服务器端收到这个消息后,不会回复任何消息,也不会广播当前的亮度值。

3.4.4 Acknowledged set with periodic publishing

Acknowledged set with periodic publishing是一种用于向服务器端发送状态设置请求并启用周期性状态发布的消息类型。它属于Acknowledged MSG的一种,也就是说,当服务器端收到这个消息后,需要回复一个对应的Status消息,告诉客户端状态是否设置成功,并且按照设定的时间间隔和发布地址,定期广播当前的状态值。这样可以保证客户端和服务器端的状态同步,也可以让其他订阅了发布地址的节点获取服务器端的状态信息。

例如,如果客户端想要设置一个灯的亮度,并且让灯每隔5秒钟发布一次当前的亮度值,它可以发送一个Generic Level Set消息,这是一种Acknowledged Set消息,它的Opcode是0x8207。它的Payload包含了要设置的亮度值和一个可选的Transition Time和Delay参数,用于控制灯的渐变效果。它还需要配置灯的发布地址和发布周期,比如发布地址为0xC000(所有节点的组播地址),发布周期为5秒。服务器端收到这个消息后,会回复一个Generic Level Status消息,它的Opcode是0x8206,它的Payload包含了当前的亮度值。同时,服务器端会每隔5秒钟向0xC000地址发送一个Generic Level Status消息,让其他节点知道当前的亮度值

四、资料获取

通过点击以下链接,您可以获取BLE Mesh模块原理图、源代码以及开发资料。链接地址将为您提供详细的文件资料,以供您进行参考和使用。

如果您在使用过程中遇到任何问题或疑虑,欢迎加我QQ ,一起探讨技术问题,我的QQ号是986571840,加的时候请注明CSDN。

BLE Mesh蓝牙组网模块 - 硬创社 (jlc.com)icon-default.png?t=N7T8https://x.jlc.com/platform/detail/001d23cba7b64b0d9df5b9b69720fadb

感谢各位用户点赞、分享、在看,这些行为让知识得以更加广泛地传播,从而让更多人受益。

请在转载作品时注明出处,严禁抄袭行为。
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/233448.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python selenium实现断言3种方法解析

1.if ...else ...判断进行断言 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 from time import * from selenium import webdriver def login(user"admin",pwd"123456"): driver webdriver.Chrome() driver.implicitly_wait(10)…

RedisInsight - Redis官方可视化工具

一、RedisInsight 简介 RedisInsight 是一个直观高效的 Redis GUI 管理工具&#xff0c;它可以对 Redis 的内存、连接数、命中率以及正常运行时间进行监控&#xff0c;并且可以在界面上使用 CLI 和连接的 Redis 进行交互&#xff08;RedisInsight 内置对 Redis 模块支持&#…

C语言--结构体详解

C语言--结构体详解 1.结构体产生原因2.结构体声明2.1 结构体的声明2.2 结构体的初始化2.3结构体自引用 3.结构体内存对齐3.1 对齐规则3.2 为什么存在内存对齐3.3 修改默认对⻬数 4. 结构体传参 1.结构体产生原因 C语言将数据类型分为了两种&#xff0c;一种是内置类型&#xf…

防火安全球阀,到2027年市场增长至68亿美元

防火安全球阀是一种在火灾、爆炸等危险环境下仍能正常使用的阀门。它被广泛用于石化、化工、船舶、电力等领域&#xff0c;以保障生产和人员安全。下面我们将从全球市场和中国市场两个方面对其发展趋势进行分析。全球市场分析&#xff1a; 从全球市场的角度来看&#xff0c;防火…

软件测试|Linux基础教程:ln命令与软链接和硬链接

简介 在Linux系统中&#xff0c;ln命令是一个非常有用的工具&#xff0c;用于创建链接&#xff08;link&#xff09;&#xff0c;将一个文件或目录链接到另一个位置。链接允许一个文件或目录可以同时存在于多个位置&#xff0c;而不会占用额外的磁盘空间。ln命令支持创建硬链接…

UI5与后端的文件交互(四)

文章目录 前言一、后端开发1. 新建管理模板表格2. 新建Function&#xff0c;动态创建文档 二、修改UI5项目1.Table里添加下载证明列2. 实现onClickDown事件 三、测试四、附 前言 这系列文章详细记录在Fiori应用中如何在前端和后端之间使用文件进行交互。 这篇的主要内容有&…

Unity 打包AB 场景烘培信息丢失

场景打包成 AB 资源的时候&#xff0c;Unity 不会打包一些自带相关的资源 解决办法&#xff1a;在 Project settings > Graphics下设置&#xff08;Automatic 修改成 Custom&#xff09;

selenium对于页面改变的定位元素处理办法

在学习selenimu中&#xff0c;总是发现元素定位不到&#xff0c;想了各种办法&#xff0c;最后总结大致有两个原因。 1.等待时间不够&#xff0c;页面还没有完全渲染就进行操作&#xff0c;使用time模块进行等待。 2.换了页面后&#xff0c;发现定位不到元素&#xff0c;因为…

HTML5和JS实现明媚月色效果

HTML5和JS实现明媚月色效果 先给出效果图&#xff1a; 源码如下&#xff1a; <!DOCTYPE html> <html> <head><title>明媚月光效果</title><style>body {margin: 0;overflow: hidden;background-color: #000; /* 添加一个深色背景以便看到…

安全与认证Week3

目录 Key Management 密钥管理 密钥交换、证书 密钥的类别 密钥管理方面 密钥分发问题 密钥分发方案 混合密钥分发 公钥分发 公钥证书 X.509 理解X.509 X.509证书包含 X.509使用过程 X.509身份验证服务 X.509版本3 取消 由X.509引申关于CA 用户认证、身份管理…

外延炉及其相关的小知识

外延炉是一种用于生产半导体材料的设备&#xff0c;其工作原理是在高温高压环境下将半导体材料沉积在衬底上。 硅外延生长&#xff0c;是在具有一定晶向的硅单晶衬底上&#xff0c;生长一层具有和衬底相同晶向的电阻率且厚度不同的晶格结构完整性好的晶体。 外延生长的特点&am…

Pycharm恢复默认设置

window 系统 找到下方目录-->删除. 再重新打开Pycharm C:\Users\Administrator\.PyCharm2023.3 你的不一定和我名称一样 只要是.PyCharm*因为版本不同后缀可能不一样 mac 系统 请根据需要删除下方目录 # Configuration rm -rf ~/Library/Preferences/PyCharm* # Caches …

LVGL的List控件的触摸按键和实体按键的处理

在LVGL的List控件使用过程中&#xff0c;虽然通过触摸按键选择item&#xff0c;但是有些场景需要实体按键选取item&#xff0c;但是LVGL 的V8.3中没有像Emwin那样有函数选择list item的函数。LVGL中List引入了Group的概念&#xff0c;把列表项都添加到同一个group中。然后通过更…

基于机器视觉的车牌检测-边缘检测因子的选择

车牌检测概述 车牌识别在检测报警、汽车出入登记、交通违法违章以及移动电子警察方面应用广泛。车牌识别过程为&#xff1a;首先通过摄像头获取包含车牌的彩色图像&#xff1b;然后进行车牌边缘检测&#xff0c;先粗略定位到车牌位置&#xff0c;再精细定位&#xff1b;最后根…

不同像平面坐标系下的Brown畸变系数互转

不同像平面坐标系下Brown畸变系数转换 记 u , v u,v u,v为像素为单位的坐标&#xff0c;f为焦距&#xff0c;单位也是像素。 记 x , y x,y x,y为理想坐标。本文推导两种情况下的Brown畸变系数转换关系&#xff1a; 相同坐标系定义、不同的坐标单位&#xff08;像素坐标与归一…

云消息队列 Kafka 版生态谈第一期:无代码转储能力介绍

作者&#xff1a;娜米 云消息队列 Kafka 版为什么需要做无代码转储 云消息队列 Kafka 版本身是一个分布式流处理平台&#xff0c;具有高吞吐量、低延迟和可扩展性等特性。它被广泛应用于实时数据处理和流式数据传输的场景。然而&#xff0c;为了将云消息队列 Kafka 版与其他数…

Gin 项目引入热加载

Gin 项目引入热加载 文章目录 Gin 项目引入热加载一、什么是热加载二、Air2.1 介绍2.2 特性特性&#xff1a;2.3 相关文档2.4 安装推荐使用 install.sh使用 go install 2.5 配置环境变量2.6 使用 三、Fresh3.1 介绍3.2 相关文档3.3 安装与使用 四、bee4.1 介绍4.2 相关文档4.3 …

K8S--持久卷(PersistentVolume)的用法

原文网址&#xff1a;K8S--持久卷(PersistentVolume)的用法-CSDN博客 简介 本文介绍K8S的持久卷(PersistentVolume)的用法。 目标&#xff1a;用持久卷的方式将主机的磁盘与容器磁盘映射&#xff0c;安装nginx并运行。 --------------------------------------------------…

高通开发系列 - toolchain交叉编译器编译kernel以及生成boot镜像

By: fulinux E-mail: fulinux@sina.com Blog: https://blog.csdn.net/fulinus 喜欢的盆友欢迎点赞和订阅! 你的喜欢就是我写作的动力! 返回:专栏总目录 目录 背景概述分析过程generate_defconfig.sh脚本环境准备合并其他几个配置文件开始编译生成dtb镜像

Python笔记07-异常、模块和包

文章目录 异常及捕获方法python模块python包安装第三方包 异常及捕获方法 当检测到一个错误时&#xff0c;Python解释器就无法继续执行了&#xff0c;反而出现了一些错误的提示&#xff0c;这就是所谓的“异常”, 也就是我们常说的BUG 例如&#xff1a;以r方式打开一个不存在的…