STM32存储左右互搏 SPI总线读写FRAM MB85RS2M

STM32存储左右互搏 SPI总线读写FRAM MB85RS2M

在中低容量存储领域,除了FLASH的使用,,还有铁电存储器FRAM的使用,相对于FLASH,FRAM写操作时不需要预擦除,所以执行写操作时可以达到更高的速度,其主要优点为没有FLASH持续写操作跨页地址需要变换的要求。相比于SRAM则具有非易失性, 因此价格方面会高一些。MB85RS2M是256K Byte(2M bit)的FRAM,能够按字节进行写入且没有写入等待时间。其管脚功能兼容FLASH:在这里插入图片描述
这里介绍STM32访问FRAM MB85RS2M的例程。采用STM32CUBEIDE开发平台,以STM32F401CCU6芯片为例,通过STM32 SPI硬件电路实现读写操作,通过USB虚拟串口进行控制。

STM32工程配置

首先建立基本工程并设置时钟:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
配置硬件SPI接口:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
增加配置PA4作为SPI软件代码控制输出的片选管脚
并增加PA2和PA3连接到/WP和/HOLD管脚,并保持输出高电平:
在这里插入图片描述
配置USB作为通讯口:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
保存并生成初始工程代码:
在这里插入图片描述

STM32工程代码

USB虚拟串口的使用参考:STM32 USB VCOM和HID的区别,配置及Echo功能实现(HAL)
代码里用到的微秒延时函数参考: STM32 HAL us delay(微秒延时)的指令延时实现方式及优化

这里的测试逻辑实现为:当USB虚拟串口收到任何数据时,STM32在内部对MB85RS2M写入从USB虚拟串口收到的数据,然后再回读出来,通过USB虚拟串口发送出去。

USB接收数据的代码:
在这里插入图片描述

static int8_t CDC_Receive_FS(uint8_t* Buf, uint32_t *Len)
{/* USER CODE BEGIN 6 */extern uint8_t cmd;extern uint8_t * RData;extern uint32_t RDataLen;RData = Buf;RDataLen = *Len;cmd = 1;USBD_CDC_SetRxBuffer(&hUsbDeviceFS, &Buf[0]);USBD_CDC_ReceivePacket(&hUsbDeviceFS);return (USBD_OK);/* USER CODE END 6 */
}

新建MB85RS2M访问函数头文件MB85RS2M.h

#ifndef INC_MB85RS2M_H_
#define INC_MB85RS2M_H_
#include "main.h"/*To define operation code*/
#define WREN 0x06    //Set Write Enable Latch
#define WRDI 0x04    //Reset Write Enable Latch
#define RDSR 0x05    //Read Status Register
#define WRSR 0x01    //Write Status Register
#define READ 0x03    //Read Memory Code
#define WRITE 0x02   //Write Memory Code
#define RDID 0x9F    //Read Device ID#define MB85RS2M_ID 0x03487F04uint32_t MB85RS2M_ReadID(void);
uint8_t MB85RS2M_Init(void);
void MB85RS2M_Set_Write_Enable_Latch(void);
void MB85RS2M_Reset_Write_Enable_Latch(void);
void MB85RS2M_Write_Status_Register(uint8_t SRV);
uint8_t MB85RS2M_Read_Status_Register(void);
void MB85RS2M_Write_Memory(uint8_t * wd, uint32_t addr, uint32_t len);
void MB85RS2M_Read_Memory(uint8_t * rd, uint32_t addr, uint32_t len);#endif /* INC_MB85RS2M_H_ */

新建MB85RS16访问函数源文件MB85RS2M.c

//Written by Pegasus Yu in 2023#include "MB85RS2M.h"
#include <string.h>#define SPI1_CS_L HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_RESET)
#define SPI1_CS_H HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_SET)
extern SPI_HandleTypeDef hspi1;
extern void PY_Delay_us_t(uint32_t Delay);uint32_t MB85RS2M_ReadID(void)
{uint8_t ftd[5];uint8_t frd[5];uint8_t Manufacturer_ID;uint8_t Continuation_Code;uint8_t Product_ID_L;uint8_t Product_ID_H;ftd[0]=RDID;SPI1_CS_L;HAL_SPI_TransmitReceive(&hspi1, ftd, frd, 5, 0xFFFFFFFF);SPI1_CS_H;Manufacturer_ID = frd[1];Continuation_Code = frd[2];Product_ID_L = frd[3];Product_ID_H = frd[4];return ((Product_ID_H<<24)|(Product_ID_L<<16)|(Continuation_Code<<8)|(Manufacturer_ID));
}uint8_t MB85RS2M_Init(void)
{uint8_t st = 0;for(uint8_t i=0; i<4; i++){if(MB85RS2M_ReadID()==MB85RS2M_ID){st = 1;break;}}return st;}/** WEL is reset after the following operations which means every write operation must follow once WREN operation MB85RS2M_Set_Write_Enable_Latch().* After power ON.* After WRDI command recognition.* At the rising edge of CS after WRSR command recognition.* At the rising edge of CS after WRITE command recognition.*/
void MB85RS2M_Set_Write_Enable_Latch(void)
{uint8_t cmd = WREN;SPI1_CS_L;HAL_SPI_Transmit(&hspi1, &cmd, 1, 0xFFFFFFFF);SPI1_CS_H;
}void MB85RS2M_Reset_Write_Enable_Latch(void)
{uint8_t cmd = WRDI;SPI1_CS_L;HAL_SPI_Transmit(&hspi1, &cmd, 1, 0xFFFFFFFF);SPI1_CS_H;
}void MB85RS2M_Write_Status_Register(uint8_t SRV)
{uint8_t data[2];data[0] = WRSR;data[1] = SRV;MB85RS2M_Set_Write_Enable_Latch();PY_Delay_us_t(2);SPI1_CS_L;HAL_SPI_Transmit(&hspi1, data, 2, 0xFFFFFFFF);SPI1_CS_H;
}uint8_t MB85RS2M_Read_Status_Register(void)
{uint8_t cmd[2];uint8_t data[2];uint8_t SRV;cmd[0] = RDSR;SPI1_CS_L;HAL_SPI_TransmitReceive(&hspi1, cmd, data, 2, 0xFFFFFFFF);SPI1_CS_H;SRV = data[1];return SRV;}/** wd: data buffer pointer* addr: address to operate for MB85RS2M* len: data length to be written*/void MB85RS2M_Write_Memory(uint8_t * wd, uint32_t addr, uint32_t len)
{uint8_t data[len+4];data[0] = WRITE;data[1] = (uint8_t)(addr>>16);data[2] = (uint8_t)(addr>>8);data[3] = (uint8_t)addr;memcpy(data+4, wd, len);MB85RS2M_Set_Write_Enable_Latch();PY_Delay_us_t(2);SPI1_CS_L;HAL_SPI_Transmit(&hspi1, data, len+4, 0xFFFFFFFF);SPI1_CS_H;
}/** rd: data buffer pointer* addr: address to operate for MB85RS2M* len: data length to be written*/void MB85RS2M_Read_Memory(uint8_t * rd, uint32_t addr, uint32_t len)
{uint8_t cmd[len+4];uint8_t data[len+4];cmd[0] = READ;cmd[1] = (uint8_t)(addr>>16);cmd[2] = (uint8_t)(addr>>8);cmd[3] = (uint8_t)addr;SPI1_CS_L;HAL_SPI_TransmitReceive(&hspi1, cmd, data , len+4, 0xFFFFFFFF);SPI1_CS_H;memcpy(rd, data+4, len);
}

完整的main.c主文件代码如下:

/* USER CODE BEGIN Header */
/********************************************************************************* @file           : main.c* @brief          : Main program body******************************************************************************* @attention** Copyright (c) 2023 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************/
//Written by Pegasus Yu in 2023
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "usb_device.h"/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <string.h>
#include "MB85RS2M.h"
/* USER CODE END Includes *//* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
uint8_t CDC_Transmit_FS(uint8_t* Buf, uint16_t Len);
/* USER CODE END PTD *//* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
__IO float usDelayBase;
void PY_usDelayTest(void)
{__IO uint32_t firstms, secondms;__IO uint32_t counter = 0;firstms = HAL_GetTick()+1;secondms = firstms+1;while(uwTick!=firstms) ;while(uwTick!=secondms) counter++;usDelayBase = ((float)counter)/1000;
}void PY_Delay_us_t(uint32_t Delay)
{__IO uint32_t delayReg;__IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);delayReg = 0;while(delayReg!=usNum) delayReg++;
}void PY_usDelayOptimize(void)
{__IO uint32_t firstms, secondms;__IO float coe = 1.0;firstms = HAL_GetTick();PY_Delay_us_t(1000000) ;secondms = HAL_GetTick();coe = ((float)1000)/(secondms-firstms);usDelayBase = coe*usDelayBase;
}void PY_Delay_us(uint32_t Delay)
{__IO uint32_t delayReg;__IO uint32_t msNum = Delay/1000;__IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);if(msNum>0) HAL_Delay(msNum);delayReg = 0;while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PD *//* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM *//* USER CODE END PM *//* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;/* USER CODE BEGIN PV *//* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
/* USER CODE BEGIN PFP *//* USER CODE END PFP *//* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t cmd=0;          //for status control
uint8_t * RData;        //USB rx data pointer
uint32_t RDataLen;      //USB rx data length
uint8_t * TData;        //USB tx data pointer
uint32_t TDataLen;      //USB tx data lengthuint8_t MB85RS2M_Status = 0;
uint16_t MB85RS2M_OPADDR = 0;
/* USER CODE END 0 *//*** @brief  The application entry point.* @retval int*/
int main(void)
{/* USER CODE BEGIN 1 *//* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_USB_DEVICE_Init();MX_SPI1_Init();/* USER CODE BEGIN 2 */PY_usDelayTest();PY_usDelayOptimize();MB85RS2M_Status = MB85RS2M_Init();/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){if(cmd==1){cmd = 0;if(MB85RS2M_Status==1){MB85RS2M_OPADDR = 0; //Set operation address hereMB85RS2M_Write_Memory(RData, MB85RS2M_OPADDR, RDataLen);PY_Delay_us_t(2);uint8_t rd[RDataLen];MB85RS2M_Read_Memory(rd, MB85RS2M_OPADDR, RDataLen);TData = rd;TDataLen = RDataLen;CDC_Transmit_FS(TData, TDataLen);}else{CDC_Transmit_FS("MB85RS2M ID read failure!\r\n", strlen("MB85RS2M ID read failure!\r\n"));}}/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}/*** @brief System Clock Configuration* @retval None*/
void SystemClock_Config(void)
{RCC_OscInitTypeDef RCC_OscInitStruct = {0};RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};/** Configure the main internal regulator output voltage*/__HAL_RCC_PWR_CLK_ENABLE();__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);/** Initializes the RCC Oscillators according to the specified parameters* in the RCC_OscInitTypeDef structure.*/RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;RCC_OscInitStruct.HSEState = RCC_HSE_ON;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;RCC_OscInitStruct.PLL.PLLM = 25;RCC_OscInitStruct.PLL.PLLN = 336;RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;RCC_OscInitStruct.PLL.PLLQ = 7;if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB buses clocks*/RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK){Error_Handler();}
}/*** @brief SPI1 Initialization Function* @param None* @retval None*/
static void MX_SPI1_Init(void)
{/* USER CODE BEGIN SPI1_Init 0 *//* USER CODE END SPI1_Init 0 *//* USER CODE BEGIN SPI1_Init 1 *//* USER CODE END SPI1_Init 1 *//* SPI1 parameter configuration*/hspi1.Instance = SPI1;hspi1.Init.Mode = SPI_MODE_MASTER;hspi1.Init.Direction = SPI_DIRECTION_2LINES;hspi1.Init.DataSize = SPI_DATASIZE_8BIT;hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;hspi1.Init.NSS = SPI_NSS_SOFT;hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;hspi1.Init.TIMode = SPI_TIMODE_DISABLE;hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;hspi1.Init.CRCPolynomial = 10;if (HAL_SPI_Init(&hspi1) != HAL_OK){Error_Handler();}/* USER CODE BEGIN SPI1_Init 2 *//* USER CODE END SPI1_Init 2 */}/*** @brief GPIO Initialization Function* @param None* @retval None*/
static void MX_GPIO_Init(void)
{GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 *//* GPIO Ports Clock Enable */__HAL_RCC_GPIOH_CLK_ENABLE();__HAL_RCC_GPIOA_CLK_ENABLE();/*Configure GPIO pin Output Level */HAL_GPIO_WritePin(GPIOA, GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4, GPIO_PIN_SET);/*Configure GPIO pins : PA2 PA3 PA4 */GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}/* USER CODE BEGIN 4 *//* USER CODE END 4 *//*** @brief  This function is executed in case of error occurrence.* @retval None*/
void Error_Handler(void)
{/* USER CODE BEGIN Error_Handler_Debug *//* User can add his own implementation to report the HAL error return state */__disable_irq();while (1){}/* USER CODE END Error_Handler_Debug */
}#ifdef  USE_FULL_ASSERT
/*** @brief  Reports the name of the source file and the source line number*         where the assert_param error has occurred.* @param  file: pointer to the source file name* @param  line: assert_param error line source number* @retval None*/
void assert_failed(uint8_t *file, uint32_t line)
{/* USER CODE BEGIN 6 *//* User can add his own implementation to report the file name and line number,ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

STM32范例测试

上述范例的测试效果如下:
在这里插入图片描述

STM32例程下载

STM32F401CCU6 I2C总线读写FRAM MB85RS2M例程

–End–

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/236197.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数字后端设计实现之自动化useful skew技术(Concurrent Clock Data)

在数字IC后端设计实现过程中&#xff0c;我们一直强调做时钟树综合要把clock skew做到最小。原因是clock skew的存在对整体设计的timing是不利的。 但是具体到某些timing path&#xff0c;可能它的local clock skew对timing是有帮助的&#xff0c;比如如下图所示。 第一级FF到第…

搭建Eureka服务注册中心

一、前言 我们在别的章节中已经详细讲解过eureka注册中心的作用&#xff0c;本节会简单讲解eureka作用&#xff0c;侧重注册中心的搭建。 Eureka作为服务注册中心可以进行服务注册和服务发现&#xff0c;注册在上面的服务可以到Eureka上进行服务实例的拉取&#xff0c;主要作用…

LeetCode[105] 从前序与中序遍历序列构造二叉树

给定两个整数数组 preorder 和 inorder &#xff0c;其中 preorder 是二叉树的先序遍历&#xff0c; inorder 是同一棵树的中序遍历&#xff0c;请构造二叉树并返回其根节点。 示例 1: 输入: preorder [3,9,20,15,7], inorder [9,3,15,20,7] 输出: [3,9,20,null,null,15,7] …

为什么推荐大家使用动态住宅ip?怎么选择?

代理ip的类型有很多&#xff0c;本文来介绍什么是动态住宅ip&#xff0c;为什么很多博主都推荐使用动态住宅ip&#xff0c;他到底有什么好处呢&#xff0c;接下来我们来学习一下。 一、什么是动态住宅ip 网络上的代理供应商很多&#xff0c;通常我们接触的比较多的几种类型有…

Ubuntu下Lighttpd服务器安装,并支持PHP

1、说明 Lighttpd 是一个德国人领导的开源Web服务器软件&#xff0c;其根本的目的是提供一个专门针对高性能网站&#xff0c;安全、快速、兼容性好并且灵活的web server环境。具有非常低的内存开销、cpu占用率低、效能好以及丰富的模块等特点。 Lighttpd是众多OpenSource轻量级…

模型评估:Holdout、交叉检验、自助法

机器学习中&#xff0c;我们通常把样本分为训练集和测试集&#xff0c;训练集用于训练模型&#xff0c;测试集用于评估模型。在样本划分和模型验证的过程中&#xff0c;存在着不同的抽样方法和验证方法。 1. 在模型评估过程中&#xff0c;有哪些主要的验证方法&#xff0c;它们…

[计算机提升] 创建FTP共享

4.7 创建FTP共享 4.7.1 FTP介绍 在Windows系统中&#xff0c;FTP共享是一种用于在网络上进行文件传输的标准协议。它可以让用户通过FTP客户端程序访问并下载或上传文件&#xff0c;实现文件共享。 FTP共享的用途非常广泛&#xff0c;例如可以让多个用户共享文件、进行文件备份…

Elasticsearch 索引文档时create、index、update的区别【学习记录】

本文基于elasticsearch7.3.0版本。 一、思维导图 elasticsearch中create、index、update都可以实现插入功能&#xff0c;但是实现原理并不相同。 二、验证index和create 由上面思维导图可以清晰的看出create、index的大致区别&#xff0c;下面我们来验证下思维导图中的场景&…

系列二、Spring Security中的核心类

一、Spring Security中的核心类 1.1、自动配置类 UserDetailsServiceAutoConfiguration 1.2、密码加密器 1.2.1、概述 Spring Security 提供了多种密码加密方案&#xff0c;官方推荐使用 BCryptPasswordEncoder&#xff0c;BCryptPasswordEncoder 使用 BCrypt 强哈希函数&a…

数据结构与算法:堆

数据结构与算法&#xff1a;堆 堆堆的定义堆的实现结构分析初始化向上调整算法向下调整算法堆的插入堆的删除得到堆顶元素判断堆是否为空 堆的应用TopK问题 堆 堆的定义 定义&#xff1a; 堆是一种数据结构&#xff0c;本质上是一个特殊的树结构&#xff0c;它是一个完全二叉…

Qt - QML框架

文章目录 1 . 前言2 . 框架生成3 . 框架解析3.1 qml.pro解析3.2 main.cpp解析3.3 main.qml解析 4 . 总结 【极客技术传送门】 : https://blog.csdn.net/Engineer_LU/article/details/135149485 1 . 前言 什么是QML&#xff1f; QML是一种用户界面规范和编程语言。它允许开发人员…

Invalid bound statement(只有调用IService接口这一层会报错的)

问题描述:controller直接调用实现类可以,但是一旦调用IService这个接口这一层就报错. 找遍了大家都说是xml没对应好,但是我确实都可以一路往下跳,真的对应好了.结果发现是 MapperScan写错了,如下才是对的. MapperScan的作用是不需要在mapper上一直写注解了,只要启动类上写好就放…

python 计数器

这个Python脚本定义了一个名为new_counter()的函数&#xff0c;它读取系统时间并将其与存储在文件中的时间进行比较。然后根据比较结果更新存储在另一个文件中的计数器值。如果系统时间与存储的时间匹配&#xff0c;则计数器值增加1。如果系统时间与存储的时间不匹配&#xff0…

C#实现Excel合并单元格数据导入数据集

目录 功能需求 Excel与DataSet的映射关系 范例运行环境 Excel DCOM 配置 设计实现 组件库引入 ​方法设计 返回值 参数设计 打开数据源并计算Sheets 拆分合并的单元格 创建DataTable 将单元格数据写入DataTable 总结 功能需求 将Excel里的worksheet表格导入到Da…

MySQL连续案例续集

1、查询学过「张三」老师授课的同学的信息 分析&#xff1a;平均 avg&#xff1a;GROUP BY分组 从高到低&#xff1a;ORDER BY 所有学生的所有课程的成绩&#xff1a;行转列 所有学生----外联&#xff08;所有&#xff09;&#xff1a;RIGHT JOIN右联 SELECTs.*,c.cname,t.tnam…

PPT自动化处理

python-pptx模块 可以创建、修改PPT(.pptx)文件非Python标准模块&#xff0c;需要单独安装 在线安装方式 pip install python-pptx 读取slide幻灯片 .slides 获取shape形状 slide.shapes 判断一个shape中是否存在文字 shape.has_text_frame 获取文字框 shape.text_f…

可以打印试卷的软件有哪些?推荐这几款

可以打印试卷的软件有哪些&#xff1f;随着科技的飞速发展&#xff0c;越来越多的学习工具如雨后春笋般涌现&#xff0c;其中&#xff0c;能够打印试卷的软件尤其受到广大学生和家长的青睐。这些软件不仅方便快捷&#xff0c;而且内容丰富&#xff0c;可以满足不同学科、不同年…

简单明了,汽车级LM317系列LM317D2TR4G线性电压稳压器电源设计-参数应用方案分享

低压差线性稳压器&#xff08;LDO&#xff09;&#xff0c;是指一种具有恒定电流输出电压的装置&#xff0c;主要由输入变压器、整流器、输出变压器三部分构成&#xff0c;工业原理为将输入的交流电压经过整流、滤波后得到直流输出电压&#xff0c;再经过控制元件和开关器件将稳…

协作共生:数字孪生与智慧城市的共赢之路

引言 随着科技的飞速发展&#xff0c;数字孪生和智慧城市的概念逐渐融入现代城市的规划和建设中。数字孪生技术为智慧城市的建设提供了强大的支持&#xff0c;而智慧城市则为数字孪生的应用提供了广阔的舞台。本文将深入探讨数字孪生与智慧城市之间的相互影响与协作&#xff0…

使用Nginx作为反向代理服务器在Linux中的最佳实践

在Linux环境下&#xff0c;Nginx因其高效性能、稳定性以及丰富的功能集而广泛用于作为反向代理服务器。以下是在Linux中使用Nginx作为反向代理服务器的最佳实践&#xff1a; 1. 安装与配置 首先&#xff0c;确保你的Linux发行版已经安装了Nginx。大多数Linux发行版都提供了Ng…