运筹说 第98期|无约束极值问题

上一期我们一起学习了关于非线性规划问题的一维搜索方法的相关内容,本期小编将带大家学习非线性规划的无约束极值问题。

下面,让我们从实际问题出发,学习无约束极值问题吧

一、问题描述及求解原理

无约束极值问题的定义

无约束极值问题可表述为

图片

在求解上述问题时常使用迭代法。

2 迭代法

迭代法的基本思想:在一个近似点处选定一个有利搜索方向,沿这个方向进行一维寻查,得出新的近似点。然后对新点施行同样手续,如此反复迭代,直到满足预定的精度要求为止。根据搜索方向的取法不同,可以有各种算法。

迭代法的分类

(1)解析法

要用到函数的一阶导数和(或)二阶导数,由于用到了函数的解析性质,故称为解析法;

(2)直接法

在迭代过程中仅用到函数值,而不要求函数的解析性质,这类方法称为直接法。

一般说来,直接法的收敛速度较慢,只是在变量较少时才适用。但直接法的迭代步骤简单,特别是当目标函数的解析表达式十分复杂,甚至写不出具体表达式时,它们的导数很难求得,或根本不存在,就只有用直接法了。而对于存在一阶/二阶导数且能够求导的问题来说,解析性质的收敛速度更快,下面介绍两种基本的解析法。

3 梯度法(最速下降法)

梯度法是一种古老的方法,但由于它的迭代过程简单,使用方便,而且又是理解其他非线性最优化方法的基础,所以先来说明这一方法。

确定下降方向

假定问题min⁡f(X),X∈En 中的目标函数 f(X)具有一阶连续偏导数,它存在极小点X *。则第k+1次近似可表示为在第k次近似点X(k)上,沿方向P(k)做射线,并前进步长λ,即

图片

将f(X)在X(k)处作泰勒展开,得

图片

假定∇f(X(k))≠0,只要

图片

即可保证

图片

即取X(k+1)=X(k)+λP(k),就能改善目标函数值。此时,只要使∇f(X(k))TP(k)取值最小,就可求出最优的X(k+1)点。

因此,需要寻找P(k),使∇f(X(k))TP(k)最小。

图片

为向量∇f(X(k))T和P(k)的内积,θ为两个向量的夹角。在∥∇f(X(k))T∥和∥P(k)∥一定的情况下,显然cos⁡θ=-1,两向量反向时,上式最小。即负梯度方向是函数值下降最快的方向。

确定步长

方法1:试算是否满足

图片

若满足则用此λ继续迭代,否则减小λ。

方法2:通过在负梯度方向的一维搜索(例如用0.618法),来确定使f(X)最小的λk

图片

这样得到的步长称为最佳步长,有时把采用最佳步长时的梯度法成为称为最速下降法。

求解步骤

(1)给定初始点X(0)和允许误差ε>0,令k:=0。

(2)计算f(Xk)和∇f(X(k)),若∥∇f(X(k))∥2≤ε,停止迭代,得近似极小点Xk和近似极小值f(Xk);否则,转下一步。

(3)做一维搜索

图片

并计算X(k+1)=X(k)-λk ∇f(X(k)),然后令k:=k+1,转回第(2)步。

现设f(X)具有二阶连续偏导数,将f(X(k))-λ∇(X(k))在X(k)作泰勒展开:

图片

对λ求导,并令其等于零,即可得近似最佳步长的如下计算公式:

图片

有时,把搜索方向P(k)的模格式化为1,即取

图片

在这种情况下,f(X)=f(X(k)+λP(k))的泰勒展开为

图片

对λ求导,并令其等于零,得到

图片

代入P(k),即近似最佳步长变为

例题求解

例题:用梯度法求函数 f(X)=x12+5x22 的极小点,取允许误差 ε=0.7

解:取初试点

图片

其黑塞矩阵

图片

图片

图片

图片

故以 X(4)=(0.152,0.0759)T为近似极小点,此时的函数值 f(X(4)) =0.0519。

该问题的精确解是X*=(0,0)T,f(X*) =0。可知,要得到真正的精确解,需无限迭代下去。

由于沿负梯度方向目标函数的最速下降性,很容易使人们误认为负梯度方向是最理想的搜索方向,最速下降法是一种理想的极小化方法。必须指出的是,某点的负梯度方向,通常只是在该点附近才具有这种最速下降的性质。在一般情况下,当用最速下降法寻找极小点时,其搜索路径呈直角锯齿状(请回忆定理3),在开头几步,目标函数值下降较快;但在接近极小点时,收敛速度常就不理想了。特别是当目标函数的等值线为比较扁平的椭圆时,收敛就更慢了。因此,在实用中常将梯度法和其他方法联合应用,在前期使用梯度法,而在接近极小点时,可改用收敛较快的其他方法。

牛顿法

接下来介绍另外一种基本的解析法——牛顿法。牛顿法的基本思想是利用迭代点处的一阶导数(梯度)和二阶导数(Hessen矩阵)对目标函数进行二次函数近似,然后把二次模型的极小点作为新的迭代点,并不断重复这一过程,直至求得满足精度的近似极小值。下面分别介绍正定二次函数和非正定二次函数的求解过程。

(1)正定二次函数的求解

对于正定二次函数

图片

假设函数极小点为X*,则必有

图片

从而有AX*=-B。对任一点X(0)∈En,函数在该点得梯度

图片

消去B,得到

图片

可解出

图片

即对于正定二次函数,从任意近似点出发,沿着

图片

方向搜索,以1为步长,迭代一步就可到达极小点。

(2)非正定二次函数的求解

对于一般n元实函数f(X),假定它有连续二阶偏导数,X(k) 为其极小点的某一近似。在这个点附近取f(X)的二阶泰勒多项式逼近:

图片

其中,∆X=X-X(k) 。

这个近似函数的极小点应满足一阶必要条件,即

图片

设∇2f(X(k))的逆阵存在,可得

图片

由上式解得的该近似函数的极小点,也就仅是f(X)极小点的近似。

因此为求得f(X)的极小点,可以-[∇2 f(X(k))]-1 ∇f(X(k))为搜索方向(牛顿方向),按下述公式进行迭代:

图片

这就是阻尼牛顿法(广义牛顿法),可用于求解非正定二次函数的极小点。

例题求解

例题:用牛顿法求 f(X)=x12+5x22的极小点。

解:任取初始点X(0)=(2,1)T,算出。在本例中,

图片

图片

图片

可知X* 确实为极小点。

优缺点

牛顿法的优点是收敛速度快,缺点是有时进行不下去而需采取改进措施,当维数较高时,工作量很大。

为克服梯度法收敛速度慢及牛顿法有时失效和在维数较高时计算工作量大的缺点,不少学者提出了一些更加实用的其他算法,如共轭梯度法、变尺度法等。

以上就是无约束极值问题的全部内容了,通过本节学习大家是否对该问题有了一个初步的认识呢,是否可以求解无约束极值问题呢?

作者 | 陈优 陈梦 

责编 | 陈梦

审核 | 徐小峰

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/238847.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

瑞_Java开发手册_(一)编程规约

文章目录 编程规约的意义(一)命名风格(二)常量定义(三)代码格式(四)OOP 规约(五)日期时间(六)集合处理(七)并发…

『 C++ 』AVL树详解 ( 万字 )

🦈STL容器类型 在STL的容器中,分为几种容器: 序列式容器(Sequence Containers): 这些容器以线性顺序存储元素,保留了元素的插入顺序。 支持随机访问,因此可以使用索引或迭代器快速访问任何位置的元素。 主要的序列式…

ES6前端学习笔记

修正 ES6是ECMA为JavaScript制定的第6个标准版本,相关历史可查看此章节《ES6-ECMAScript6简介》。 标准委员会最终决定,标准在每年6月正式发布并作为当年的正式版本,接下来的时间里就在此版本的基础上进行改动,直到下一年6月草案…

在微服务架构中认证和授权的那些事儿

在微服务架构中认证和授权是最基础的服务能力,其中这一块行业类的标准就是OAuth2 和 SSO ,而OAuth2 和 SSO 可以归类为“用户管理和身份验证”工具,OpenID Connect 1.0是 OAuth 2.0 协议之上的一个简单身份层。 Part.1 认识OAuth 2.0 OAuth…

【数据结构】C语言实现共享栈

共享栈的C语言实现 导言一、共享栈1.1 共享栈的初始化1.2 共享栈的判空1.3 共享栈的入栈1.3.1 空指针1.3.2 满栈1.3.3 入栈空间错误1.3.4 正常入栈1.3.5 小结 1.4 共享栈的查找1.5 共享栈的出栈1.6 共享栈的销毁 二、共享栈的实现演示结语 导言 大家好,很高兴又和大…

领域驱动设计——DDD领域驱动设计进阶

摘要 进阶篇主要讲解领域事件、DDD 分层架构、几种常见的微服务架构模型以及中台设计思想等内容。如何通过领域事件实现微服务解耦?、怎样进行微服务分层设计?、如何实现层与层之间的服务协作?、通过几种微服务架构模型的对比分析&#xff0…

基于Java (spring-boot)的社团管理系统

一、项目介绍 系统管理员的功能概述: ①用户管理 a.注册用户账户 当一个新用户注册时,用户填写基本信息并上传。用户基本信息包括账号、 姓名、密码、手机、地址等信息。 b.用户信息管理 管理员可以查看系统所有用户的基本信息,并修改和…

【征服redis2】redis的事务与lua

1.redis事务介绍 在前面我们介绍了redis的几种典型数据结构和应用,本文我们来看一下redis的事务问题。事务也是数据库的重要主题,熟悉关系型数据库的读者应该对事务比较了解,简单地说,事务表示一组动作,要么全部执行&…

基于Springboot的善筹网(众筹网-有报告)。Javaee项目,springboot项目。

演示视频: 基于Springboot的善筹网(众筹网-有报告)。Javaee项目,springboot项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构,通过Spring S…

2024年全网最全春招时间线

2024年全网最全春招时间线 春招,许多同学可能会误以为这是春天才会进行。 你可能会想,期末刚考完试,先享受下寒假,再欢度春节,收些红包,甚至还能抽空去理个发型。等到春日明媚时,再参加春招活…

【数据结构】归并排序的非递归写法和计数排序

前言 💓作者简介: 加油,旭杏,目前大二,正在学习C,数据结构等👀 💓作者主页:加油,旭杏的主页👀 ⏩本文收录在:再识C进阶的专栏&#x1…

表单验证 ---- 在Vue2中使用ElementUI进行表单验证

目录 前言 给表单绑定对应属性 在data中定义数据对象和表单的定义规则 与数据对象双向绑定 对整个表单进行验证 前言 在做项目时&#xff0c;对于表单进行验证是我们必不可少的 例如 搭建一个基本的登录界面 <div class"form"><h1>登录</h1>&…

电商物流查询:未来的发展方向

在电商日益繁荣的时代&#xff0c;物流信息查询不仅关乎消费者体验&#xff0c;更影响着电商运营的效率。快速、准确地追踪物流信息至关重要。本文将简述物流信息快速追踪的价值&#xff0c;并重点介绍固乔快递查询助手这一高效查询工具及其批量查询功能。 一、物流信息快速追踪…

一、docker的安装与踩坑

目录 一、安装docker&#xff08;centos7安装docker&#xff09;1.安装环境前期准备2.参考官网安装前准备3.参考官网安装步骤开始安装docker4.运行首个容器 二、安装一些软件的踩坑1.启动docker踩坑2.安装mysql踩坑3.罕见问题 三、关于我的虚拟机 一、安装docker&#xff08;ce…

鸿蒙开发(三)理解UIAbility

前文提到过&#xff0c;在使用DevEco创建鸿蒙项目的时候&#xff0c;会选择Empty Ability&#xff0c;那么这个Ability是什么呢&#xff1f;其实对比Android Studio创建Android羡慕时选择的Empty Activity&#xff0c;感觉Harmony的Ability更像是Android的Activity&#xff0c;…

持久双向通信网络协议-WebSocket-入门案例实现demo

1 介绍 WebSocket 是基于 TCP 的一种新的网络协议。它实现了浏览器与服务器全双工通信——浏览器和服务器只需要完成一次握手&#xff0c;两者之间就可以创建持久性的连接&#xff0c; 并进行双向数据传输。 HTTP协议和WebSocket协议对比&#xff1a; HTTP是短连接&#xff0…

利用人工智能和机器人技术实现复杂的自动化任务!

这篇mylangrobot项目由neka-nat创建&#xff0c;本文已获得作者Shirokuma授权进行编辑和转载。 https://twitter.com/neka_nat GitHub-mylangrobot &#xff1a;GitHub - neka-nat/mylangrobot: Language instructions to mycobot using GPT-4V 引言 本项目创建了一个使用GPT-4…

【K8S 云原生】Kurbernets集群的调度策略

目录 一、Kubernetes的list-watch机制 1、List-watch 2、创建pod的过程&#xff1a; 二、scheduler调度的过程和策略&#xff1a; 1、简介 2、预算策略&#xff1a;predicate 3、优先策略&#xff1a; 3.1、leastrequestedpriority&#xff1a; 3.2、balanceresourceal…

爬虫利器一览

前言 爬虫&#xff08;英文&#xff1a;spider&#xff09;&#xff0c;可以理解为简单的机器人&#xff0c;如此一个“不为名利而活&#xff0c;只为数据而生&#xff0c;目标单纯&#xff0c;能量充沛&#xff0c;不怕日晒雨淋&#xff0c;不惧寒冬酷暑”的家伙&#xff0c;…

含PEMFC的热电联供系统能量管理策略Simulink仿真

1.光伏发电系统 在直流微电网中&#xff0c;光伏电池系统经过升压DC/DC变换器接入直流微电网提供功率。在不同的系统运行条件下&#xff0c;光伏电池系统有三种工作模式&#xff1a;MPPT 模式、下垂模式和空闲模式。由于光伏阵列的输出特性随着环境条件影响&#xff0c;光伏电池…