Matlab深度学习进行波形分割(二)

🔗 运行环境:Matlab

🚩 撰写作者:左手の明天

🥇 精选专栏:《python》

🔥  推荐专栏:《算法研究》

🔐#### 防伪水印——左手の明天 ####🔐

💗 大家好🤗🤗🤗,我是左手の明天!好久不见💗

💗今天分享Matlab深度学习——波形分割💗

📆  最近更新:2024 年 01 月 15 日,左手の明天的第 312 篇原创博客

📚 更新于专栏:matlab

🔐#### 防伪水印——左手の明天 ####🔐


🚩接上上一篇文章 详解Matlab深度学习进行波形分割

使用滤波后的 ECG 信号训练网络

使用与以前相同的网络架构基于滤波后的 ECG 信号训练 LSTM 网络。

if actionFlag == "Train networks"filteredNet = trainNetwork(filteredTrainSignals,trainLabels,layers,options);
end

信号预处理将训练准确度提高到 80% 以上。

对滤波后的 ECG 信号进行分类

用更新后的 LSTM 网络对预处理后的测试数据进行分类。

predFilteredTest = classify(filteredNet,filteredTestSignals,'MiniBatchSize',50);

将分类性能可视化为混淆矩阵。

figure
confusionchart([testLabels{:}],[predFilteredTest{:}],'Normalization','row-normalized');

简单的预处理将 T 波分类提高了约 15%,将 QRS 复波和 P 波分类提高了约 10%。

ECG 信号的时频表示

时间序列数据成功分类的常见方法是提取时频特征并将其馈送到网络而不是原始数据。然后,网络同时跨时间和频率学习模式。

傅里叶同步压缩变换 (FSST) 计算每个信号采样的频谱,因此对于需要保持与原始信号相同的时间分辨率的分割问题,它是可直接使用的理想选择。使用 fsst 函数检查一个训练信号的变换。指定长度为 128 的凯塞窗以提供足够的频率分辨率。

data =  preview(trainDs);
figure
fsst(data{1,1},250,kaiser(128),'yaxis')

基于感兴趣的频率范围 [0.5, 40] Hz 计算训练数据集中每个信号的 FSST。将 FSST 的实部和虚部视为单独的特征,并将两个分量都馈送到网络中。而且,通过减去均值并除以标准差来标准化训练特征。使用变换后的数据存储、extractFSSTFeatures 辅助函数和 tall 函数来并行处理数据。

fsstTrainDs = transform(trainDs,@(x)extractFSSTFeatures(x,250));
fsstTallTrainSet = tall(fsstTrainDs);
fsstTrainData = gather(fsstTallTrainSet);
Evaluating tall expression using the Parallel Pool 'Processes':
- Pass 1 of 1: 0% complete
Evaluation 0% complete- Pass 1 of 1: 4% complete
Evaluation 4% complete- Pass 1 of 1: 8% complete
Evaluation 8% complete- Pass 1 of 1: 12% complete
Evaluation 12% complete- Pass 1 of 1: 17% complete
Evaluation 17% complete- Pass 1 of 1: 21% complete
Evaluation 21% complete- Pass 1 of 1: 25% complete
Evaluation 25% complete- Pass 1 of 1: 29% complete
Evaluation 29% complete- Pass 1 of 1: 33% complete
Evaluation 33% complete- Pass 1 of 1: 38% complete
Evaluation 38% complete- Pass 1 of 1: 42% complete
Evaluation 42% complete- Pass 1 of 1: 46% complete
Evaluation 46% complete- Pass 1 of 1: 50% complete
Evaluation 50% complete- Pass 1 of 1: 54% complete
Evaluation 54% complete- Pass 1 of 1: 58% complete
Evaluation 58% complete- Pass 1 of 1: 62% complete
Evaluation 62% complete- Pass 1 of 1: 67% complete
Evaluation 67% complete- Pass 1 of 1: 71% complete
Evaluation 71% complete- Pass 1 of 1: 75% complete
Evaluation 75% complete- Pass 1 of 1: 79% complete
Evaluation 79% complete- Pass 1 of 1: 83% complete
Evaluation 83% complete- Pass 1 of 1: 88% complete
Evaluation 88% complete- Pass 1 of 1: 92% complete
Evaluation 92% complete- Pass 1 of 1: 96% complete
Evaluation 96% complete- Pass 1 of 1: 100% complete
Evaluation 100% complete- Pass 1 of 1: Completed in 2 min 39 sec
Evaluation 100% completeEvaluation completed in 2 min 39 sec

对测试数据重复此过程。

fsstTTestDs = transform(testDs,@(x)extractFSSTFeatures(x,250));
fsstTallTestSet = tall(fsstTTestDs);
fsstTestData = gather(fsstTallTestSet);
Evaluating tall expression using the Parallel Pool 'Processes':
- Pass 1 of 1: Completed in 1 min 8 sec
Evaluation completed in 1 min 8 sec

调整网络架构

修改 LSTM 架构,使网络接受每个采样的频谱,而不是单一值。检查 FSST 的大小以查看频率的数量。

size(fsstTrainData{1,1})
ans = 1×240        5000

指定一个包含 40 个输入特征的 sequenceInputLayer。保持其余网络参数不变。

layers = [ ...sequenceInputLayer(40)lstmLayer(200,'OutputMode','sequence')fullyConnectedLayer(4)softmaxLayerclassificationLayer];

使用 ECG 信号的 FSST 训练网络

使用变换后的数据集训练更新后的 LSTM 网络。

if actionFlag == "Train networks"fsstNet = trainNetwork(fsstTrainData(:,1),fsstTrainData(:,2),layers,options);
end

使用时频特征提高了训练准确度,现在已超过 90%。

用 FSST 对测试数据进行分类

使用更新后的 LSTM 网络和提取的 FSST 特征,对测试数据进行分类。

predFsstTest = classify(fsstNet,fsstTestData(:,1),'MiniBatchSize',50);

将分类性能可视化为混淆矩阵。

confusionchart([fsstTestData{:,2}],[predFsstTest{:}],'Normalization','row-normalized');

 

与原始数据结果相比,使用时间频率表示法将 T 波分类提高了约 25%,将 P 波分类提高了约 40%,将 QRS 复波分类提高了 30%。

使用 signalMask 对象将网络预测与单个 ECG 信号的真实值标签进行比较。绘制感兴趣的区域时忽略 "n/a" 标签。

testData = gather(tall(testDs));
Evaluating tall expression using the Parallel Pool 'Processes':
- Pass 1 of 1: Completed in 2.1 sec
Evaluation completed in 2.2 sec
Mtest = signalMask(testData{1,2}(3000:4000));
Mtest.SpecifySelectedCategories = true;
Mtest.SelectedCategories = find(Mtest.Categories ~= "n/a");figure
subplot(2,1,1)
plotsigroi(Mtest,testData{1,1}(3000:4000))
title('Ground Truth')Mpred = signalMask(predFsstTest{1}(3000:4000));
Mpred.SpecifySelectedCategories = true;
Mpred.SelectedCategories = find(Mpred.Categories ~= "n/a");subplot(2,1,2)
plotsigroi(Mpred,testData{1,1}(3000:4000))
title('Predicted')
 

结论

此示例说明信号预处理和时频分析是如何提高 LSTM 波形分割性能的。带通滤波和基于傅里叶的同步压缩使所有输出类的平均改进程度从 55% 提高到 85% 左右。

参考资料

[1] McSharry, Patrick E., et al."A dynamical model for generating synthetic electrocardiogram signals."IEEE® Transactions on Biomedical Engineering.Vol. 50, No. 3, 2003, pp. 289–294.

[2] Laguna, Pablo, Raimon Jané, and Pere Caminal."Automatic detection of wave boundaries in multilead ECG signals:Validation with the CSE database."Computers and Biomedical Research.Vol. 27, No. 1, 1994, pp. 45–60.

[3] Goldberger, Ary L., Luis A. N. Amaral, Leon Glass, Jeffery M. Hausdorff, Plamen Ch.Ivanov, Roger G. Mark, Joseph E. Mietus, George B. Moody, Chung-Kang Peng, and H. Eugene Stanley."PhysioBank, PhysioToolkit, and PhysioNet:Components of a New Research Resource for Complex Physiologic Signals."Circulation.Vol. 101, No. 23, 2000, pp. e215–e220. [Circulation Electronic Pages; http://circ.ahajournals.org/content/101/23/e215.full].

[4] Laguna, Pablo, Roger G. Mark, Ary L. Goldberger, and George B. Moody."A Database for Evaluation of Algorithms for Measurement of QT and Other Waveform Intervals in the ECG."Computers in Cardiology.Vol.24, 1997, pp. 673–676.

[5] Sörnmo, Leif, and Pablo Laguna."Electrocardiogram (ECG) signal processing."Wiley Encyclopedia of Biomedical Engineering, 2006.

[6] Kohler, B-U., Carsten Hennig, and Reinhold Orglmeister."The principles of software QRS detection."IEEE Engineering in Medicine and Biology Magazine.Vol. 21, No. 1, 2002, pp. 42–57.

[7] Salamon, Justin, and Juan Pablo Bello."Deep convolutional neural networks and data augmentation for environmental sound classification."IEEE Signal Processing Letters.Vol. 24, No. 3, 2017, pp. 279–283.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/239745.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

02.部署LVS-DR群集

技能展示: 了解LVS-DR群集的工作原理 会构建LVS-DR负载均衡群集 2.1 LVS-DR 集群 LVS-DR( Linux Virtual Server Director Server )工作模式,是生产环境中最常用的一种工作模式。 2.1.1.LVS-DR 工作原理 LVS-DR 模式&…

react、Vue打包直接运行index.html不空白方法

react vue 在根目录下创建 vue.config.js 文件,写入 module.exports {publicPath: ./, }

【SpringBoot框架篇】35.kafka环境搭建和收发消息

kafka环境搭建 kafka依赖java环境,如果没有则需要安装jdk yum install java-1.8.0-openjdk* -y1.下载安装kafka kafka3.0版本后默认自带了zookeeper,3.0之前的版本需要单独再安装zookeeper,我使用的最新的3.6.1版本。 cd /usr/local wget https://dlcdn.apache.…

C语言——编译和链接

(图片由AI生成) 0.前言 C语言是最受欢迎的编程语言之一,以其接近硬件的能力和高效性而闻名。理解C语言的编译和链接过程对于深入了解其运行原理至关重要。本文将详细介绍C语言的翻译环境和运行环境,重点关注编译和链接的各个阶段…

蓝桥杯AcWing学习笔记 8-2数论的学习(下)

蓝桥杯 我的AcWing 题目及图片来自蓝桥杯C AB组辅导课 数论(下) 蓝桥杯省赛中考的数论不是很多,这里讲几个蓝桥杯常考的知识点。 约数个数定理 我们如何去求一个数的约数个数呢? N N N分解质因数的结果: N P 1 α…

kubeSphere DevOps部署vue项目

devops部署vue项目 🌔环境说明🌏创建DevOps工程🌏填写流水线信息🌏创建流水线 🌔部署应用所需脚本JenkinsfileDockerfile 🌔脚本一些参数如何设置说明🌏deploy.yaml中的:imagePullSecrets:name属…

部署 LVS-DR 群集

本章内容: -了解LVS-DR群集的工作原理 -会构建LVS-DR负载均衡群集 2.1 LVS-DR 集群 LVS-DR ( Linux Virtual Server Director Server )工作模式,是生产环境中最常用的一 种工作模式。 2.1.1 . LVS-DR 工作原理 …

JVM运行时数据区(下篇)

紧接上篇:JVM运行时数据区(上篇)-CSDN博客 堆 一般Java程序中堆内存是空间最大的一块内存区域。创建出来的对象都存在于堆上。 栈上的局部变量表中,可以存放堆上对象的引用。静态变量也可以存放堆对象的引用,通过静态…

记录Qt和opencv 新环境配置过程

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、Qt是什么?二、Qt的版本三、安装步骤1.下载Qt2.双击安装包.exe开始安装3. 需要登陆才能继续安装,没有的就用邮箱注册账号4.注意安装路…

linux创建文件

创建文件夹: mkdir folder_name其中,folder_name是想要创建的文件夹的名称。 例如,如果想在当前目录下创建一个名为 "my_folder" 的文件夹,可以运行以下命令: mkdir my_folder如果想在特定路径下创建文件…

element-ui el-table表格勾选框条件禁用,及全勾选按钮禁用, 记录

项目场景: 表格的部分内容是可以被勾选的,部分内容是不可以被勾选的 使用的是 “element-plus”: “^2.2.22”, 以上应该都是兼容的 问题描述 要求el-table表格中,部分内容不可以被勾选,全选框在没有可选内容时,是禁…

RK3566RK3568安卓11隐藏状态栏带接口

文章目录 前言一、创建全局变量二、设置应用添加隐藏导航栏按钮三、添加按钮功能四、动态隐藏还有显示功能五、创建系统导航栏广播接口总结 前言 关于Android系统的状态栏,不同的客户有不同的需求: 有些客户需要永久隐藏状态栏,有些客户需要在设置显示中…

Flask框架小程序后端分离开发学习笔记《1》网络知识

Flask框架小程序后端分离开发学习笔记《1》网络知识 Flask是使用python的后端,由于小程序需要后端开发,遂学习一下后端开发。 一、网址组成介绍 协议:http,https (https是加密的http)主机:g.cn zhihu.com之类的网址…

通义灵码 - 免费的阿里云 VS code Jetbrains AI 编码辅助工具

系列文章目录 前言 通义灵码,是阿里云出品的一款基于通义大模型的智能编码辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力,并针对阿里云 SDK/OpenAPI 的使用…

【Java 设计模式】创建型之建造者模式

文章目录 1. 定义2. 应用场景3. 代码实现4. 应用示例结语 在软件开发中,建造者模式是一种创建型设计模式,它将一个复杂对象的构建与其表示分离,使得同样的构建过程可以创建不同的表示。建造者模式通常包括一个指导者(Director&…

如何在 SwiftUI 中实现音频图表

文章目录 前言DataPoint 结构体BarChartView 结构体ContentView 结构体实现协议实现线图总结 前言 在可访问性方面,图表是复杂的事物之一。iOS 15 引入了一项名为“音频图表”的新功能。 下面我们将学习如何通过使用 accessibilityChartDescriptor 视图修饰符为任…

远程开发之vscode端口转发

远程开发之vscode端口转发 涉及的软件forwarded port 通过端口转发,实现在本地电脑上访问远程服务器上的内网的服务。 涉及的软件 vscode、ssh forwarded port 在ports界面中的port字段,填需要转发的IP:PORT,即可转发远程服务器中的内网端…

十、Three场景实现多个物体的合并

Three场景实现多个物体的合并 目的 产品需求是让物体的光柱墙包含一个多边形的区域,二而我的多边形只能使用原型,方向,多边形。那么再研究的时候就需要将这些多边形合并成为一个形状,那么就行实现了。 原先的图形 如上图,是两个mesh组成的。首先寻找mesh合并的方法。 第…

java日志框架总结

一、日志框架简单分类介绍 java常用的日志框架、可以分为两组: 1、JCL、JUL、Log4j; 2、SLF4J、Log4j2、Logback; 其中第一组是比较早期的日志实现框架,JCL并不是具体的日志实现框架,JCL其实是定义了一…

网络安全笔记-SQL注入

文章目录 前言一、数据库1、Information_schema2、相关函数 二、SQL注入分类1、联合查询注入(UNION query SQL injection)语法 2、报错注入(Error-based SQL injection)报错注入分类报错函数报错注入原理 3、盲注布尔型盲注&#…