Matlab数学建模算法之模拟退火算法(SA)详解

🔗 运行环境:Matlab

🚩 撰写作者:左手の明天

🥇 精选专栏:《python》

🔥  推荐专栏:《算法研究》

🔐#### 防伪水印——左手の明天 ####🔐

💗 大家好🤗🤗🤗,我是左手の明天!好久不见💗

💗今天分享matlab数学建模算法——模拟退火算法💗

📆  最近更新:2023 年 12 月 24 日,左手の明天的第 310 篇原创博客

📚 更新于专栏:matlab

🔐#### 防伪水印——左手の明天 ####🔐


目录

一、模拟退火算法

1 基本思想

2 基本步骤

二、算法流程​​​​​​​

三、解决局部最优解

四、模拟退火算法在数学建模的应用

五、旅行商问题的matlab实现

1 旅行商问题

2 算法设计流程

(1)TSP问题的解空间和初始解

(2)新解的产生

(3)目标函数

(4)目标函数差

(5)Metropolis准则

3 matlab实现

六、MATLAB 模拟退火算法的示例代码

七、模拟退火算法优缺点


一、模拟退火算法

模拟退火算法(Simulated Annealing,SA)是一种模拟固体降温过程的最优化算法。其模拟的过程是首先将固体加温至某一温度,固体内部的粒子随温度上升慢慢变为无序的状态,内能增大,然后让其慢慢冷却,温度下降时,内部的粒子慢慢趋于有序,达到一种平衡态,最后达到常温时成为基态,此时内能减为最小。

模拟退火算法的基本原理分为三部分:初始解、解空间和目标函数。初始解是算法迭代的起点,试验表明,模拟退火算法是健壮的,即最终解的求得最优解并不十分依赖初始解的选取,从而可任意选择一个初始解。当然,如果初始解选择得当可以加快找到全局最优解。解空间一般是离散的可行解的集合。

1 基本思想

模拟退火算法的基本思想是将待求解的问题视为一个能量系统,系统的当前状态为解的状态,能量值为解的目标函数值,系统的状态转移依赖于Metropolis准则

在模拟退火过程中,首先从某一初始解出发,将其视为系统的初始状态,然后通过随机选择不同的状态转移方式,不断迭代产生新的状态。在每一步转移中,根据目标函数值的差异和温度参数的大小,决定是否接受新状态作为当前状态。如果新状态的目标函数值更优,则一定概率上接受新状态;如果新状态的目标函数值更劣,则根据概率判断是否接受新状态。

模拟退火算法的精髓在于引入了温度参数,通过不断降低温度来引导系统从劣解逐步向最优解过渡。在这个过程中,通过Metropolis准则控制状态转移概率,使得算法在迭代过程中能够跳出局部最优解,向全局最优解靠近。

总的来说,模拟退火算法是一种基于概率的优化算法,通过模拟固体降温的过程,利用随机性和概率性寻找全局最优解,具有较好的鲁棒性和通用性。

2 基本步骤

模拟退火算法的基本步骤如下:

(1)初始化参数。包括初始温度、降温速率、终止温度和初始解等。

(2)产生新解。在当前解的邻域内产生一个新解。

(3)接受新解。计算当前解与新解之间的差异,如果新解更优,则接受它;否则,以一定的概率接受它。

(4)降温。根据设定的降温速率降低温度。

(5)终止判断。如果温度降低到终止温度以下,则停止搜索,输出最优解。

二、算法流程

三、解决局部最优解

模拟退火算法通过以下方式解决局部最优解的问题:

  1. 引入温度参数:模拟退火算法中的温度参数控制着算法的搜索过程。在高温状态下,算法更倾向于接受较差的解,这样可以探索更广阔的解空间;随着温度的降低,算法逐渐趋于保守,只接受更优的解。这种温度的变化过程有助于算法跳出局部最优解,向全局最优解过渡。
  2. Metropolis准则:模拟退火算法中的Metropolis准则是决定是否接受新状态的关键。当新状态比当前状态更优时,一定概率上接受新状态;当新状态更劣时,根据概率判断是否接受新状态。这样可以避免算法陷入局部最优解,而是通过概率的方式探索整个解空间。
  3. 随机性:模拟退火算法中的随机性使得算法在搜索过程中能够探索更多的解空间,而不是只停留在局部最优解附近。这种随机性有助于算法跳出局部最优解,向全局最优解靠近。

综上所述,模拟退火算法通过引入温度参数、Metropolis准则和随机性等方式,解决了局部最优解的问题。这种基于概率的优化算法能够跳出局部最优解,向全局最优解靠近,从而在各种优化问题中取得了较好的效果。

四、模拟退火算法在数学建模的应用

以下是模拟退火算法在数学建模竞赛中的一些应用场景:

  1. 旅行商问题(TSP):在这个经典问题中,模拟退火算法可以用来找到一条使得旅行商访问所有城市的总距离最短的路径。
  2. 背包问题:模拟退火算法可以用来解决背包问题,即在满足背包容量限制的前提下,找到一种物品组合使得背包中物品总价值最大。
  3. 图的着色问题:模拟退火算法可以用来解决图的最小着色问题,即给图的顶点分配最少的颜色,使得相邻的顶点颜色不同。
  4. 聚类问题:模拟退火算法可以用来解决数据聚类问题,即在给定数据集和聚类数量的前提下,找到一种聚类方式使得类内距离最小,类间距离最大。
  5. 车辆路径问题(VRP):模拟退火算法可以用来解决车辆路径问题,即在满足车辆容量和行驶距离限制的前提下,找到一种物品配送路径使得配送成本最小。
  6. 调度问题:模拟退火算法可以用来解决生产调度、车间调度等问题,目标是在满足生产约束的前提下,最小化生产时间、等待时间或者其他相关指标。

五、旅行商问题的matlab实现

1 旅行商问题

一名商人要到n个不同的城市去推销商品,每2个城市l和j之间的距离为d,如何选择一条路径使得商人每个城市走一遍后回到起点所走的路径最短。

例如:有52个城市,已知每个城市的坐标,求每个城市走一遍后回到起点,所走的路径最短。

2 算法设计流程

(1)TSP问题的解空间和初始解

(2)新解的产生

二变换法:任选序号u,v(设u<v<n),变换u,v之间的访问顺序

三变换法:任选序号u,v,w(设u<=v<w),将u,v之间的路径插到w之后访问

(3)目标函数

(4)目标函数差

计算变换前的解和变换后目标函数的差值:

(5)Metropolis准则

以新解与当前解的目标函数差定义接受概率,即

3 matlab实现

clear	clca = 0.99;	% 温度衰减函数的参数t0 = 97; tf = 3; t = t0;Markov_length = 10000;	% Markov链长度coordinates = [
1	 565.0	 575.0;	2	  25.0	 185.0;	3	 345.0	 750.0;	
4	 945.0	 685.0;	5	 845.0	 655.0;	6	 880.0	 660.0;	
7	  25.0	 230.0;	8	 525.0	1000.0;	9	 580.0	1175.0;	
10	 650.0	1130.0;	11	1605.0	 620.0;	12	1220.0	 580.0;	
13	1465.0	 200.0;	14	1530.0	   5.0;	15	 845.0	 680.0;	
16	 725.0	 370.0;	17	 145.0	 665.0;	18	 415.0	 635.0;	
19	 510.0	 875.0;	20	 560.0	 365.0;	21	 300.0	 465.0;	
22	 520.0	 585.0;	23	 480.0	 415.0;	24	 835.0	 625.0;	
25	 975.0	 580.0;	26	1215.0	 245.0;	27	1320.0	 315.0;	
28	1250.0	 400.0;	29	 660.0	 180.0;	30	 410.0	 250.0;	
31	 420.0	 555.0;	32	 575.0	 665.0;	33	1150.0	1160.0;	
34	 700.0	 580.0;	35	 685.0	 595.0;	36	 685.0	 610.0;	
37	 770.0	 610.0;	38	 795.0	 645.0;	39	 720.0	 635.0;	
40	 760.0	 650.0;	41	 475.0	 960.0;	42	  95.0	 260.0;	
43	 875.0	 920.0;	44	 700.0	 500.0;	45	 555.0	 815.0;	
46	 830.0	 485.0;	47	1170.0	  65.0;	48	 830.0	 610.0;	
49	 605.0	 625.0;	50	 595.0	 360.0;	51	1340.0	 725.0;	
52	1740.0	 245.0;	
];coordinates(:,1) = [];amount = size(coordinates,1); 	% 城市的数目% 通过向量化的方法计算距离矩阵dist_matrix = zeros(amount, amount);coor_x_tmp1 = coordinates(:,1) * ones(1,amount);coor_x_tmp2 = coor_x_tmp1';coor_y_tmp1 = coordinates(:,2) * ones(1,amount);coor_y_tmp2 = coor_y_tmp1';dist_matrix = sqrt((coor_x_tmp1-coor_x_tmp2).^2 + ...(coor_y_tmp1-coor_y_tmp2).^2);sol_new = 1:amount;         % 产生初始解
% sol_new是每次产生的新解;sol_current是当前解;sol_best是冷却中的最好解;E_current = inf;E_best = inf; 		% E_current是当前解对应的回路距离;
% E_new是新解的回路距离;
% E_best是最优解的sol_current = sol_new; sol_best = sol_new;          p = 1;while t>=tffor r=1:Markov_length		% Markov链长度% 产生随机扰动if (rand < 0.5)	% 随机决定是进行两交换还是三交换% 两交换ind1 = 0; ind2 = 0;while (ind1 == ind2)ind1 = ceil(rand.*amount);ind2 = ceil(rand.*amount);endtmp1 = sol_new(ind1);sol_new(ind1) = sol_new(ind2);sol_new(ind2) = tmp1;else% 三交换ind1 = 0; ind2 = 0; ind3 = 0;while (ind1 == ind2) || (ind1 == ind3) ...|| (ind2 == ind3) || (abs(ind1-ind2) == 1)ind1 = ceil(rand.*amount);ind2 = ceil(rand.*amount);ind3 = ceil(rand.*amount);endtmp1 = ind1;tmp2 = ind2;tmp3 = ind3;% 确保ind1 < ind2 < ind3if (ind1 < ind2) && (ind2 < ind3);elseif (ind1 < ind3) && (ind3 < ind2)ind2 = tmp3;ind3 = tmp2;elseif (ind2 < ind1) && (ind1 < ind3)ind1 = tmp2;ind2 = tmp1;elseif (ind2 < ind3) && (ind3 < ind1) ind1 = tmp2;ind2 = tmp3; ind3 = tmp1;elseif (ind3 < ind1) && (ind1 < ind2)ind1 = tmp3;ind2 = tmp1; ind3 = tmp2;elseif (ind3 < ind2) && (ind2 < ind1)ind1 = tmp3;ind2 = tmp2; ind3 = tmp1;endtmplist1 = sol_new((ind1+1):(ind2-1));sol_new((ind1+1):(ind1+ind3-ind2+1)) = ...sol_new((ind2):(ind3));sol_new((ind1+ind3-ind2+2):ind3) = ...tmplist1;end%检查是否满足约束% 计算目标函数值(即内能)E_new = 0;for i = 1 : (amount-1)E_new = E_new + ...dist_matrix(sol_new(i),sol_new(i+1));end% 再算上从最后一个城市到第一个城市的距离E_new = E_new + ...dist_matrix(sol_new(amount),sol_new(1));if E_new < E_currentE_current = E_new;sol_current = sol_new;if E_new < E_best
% 把冷却过程中最好的解保存下来E_best = E_new;sol_best = sol_new;endelse% 若新解的目标函数值小于当前解的,% 则仅以一定概率接受新解if rand < exp(-(E_new-E_current)./t)E_current = E_new;sol_current = sol_new;else	sol_new = sol_current;endendendt=t.*a;		% 控制参数t(温度)减少为原来的a倍enddisp('最优解为:')disp(sol_best)disp('最短距离:')disp(E_best)

六、MATLAB 模拟退火算法的示例代码

以下是一个简单的 MATLAB 模拟退火算法的示例代码:

function [x_best, f_best] = simulated_annealing(f, lb, ub, init_temp, alpha, max_iter)
% SIMULATED_ANNEALING 模拟退火算法
%   f: 目标函数
%   lb: 变量的下界
%   ub: 变量的上界
%   init_temp: 初始温度
%   alpha: 温度衰减系数
%   max_iter: 最大迭代次数% 初始化
x = lb + (ub-lb).*rand(size(lb)); % 随机生成初始解
f_x = f(x); % 计算目标函数值
temp = init_temp; % 初始温度
x_best = x; % 最佳解
f_best = f_x; % 最佳目标函数值for iter = 1:max_iter% 生成新解x_new = x + randn(size(x)).*exp(-alpha.*temp); % 根据温度生成新解f_new = f(x_new); % 计算新解的目标函数值% 接受新解的准则if f_new < f_x || rand < exp(-alpha.*temp*(f_new-f_x))x = x_new; % 更新解f_x = f_new; % 更新目标函数值if f_x < f_best % 更新最佳解和最佳目标函数值x_best = x;f_best = f_x;endendtemp = max(temp - alpha, 0.01); % 温度衰减
end
end

使用该函数的示例代码:

function y = f(x)
% 目标函数,这里选择简单的平方和函数 y = sum(x.^2)
y = sum(x.^2);
endlb = -10; % 变量的下界为 -10
ub = 10; % 变量的上界为 10
init_temp = 1000; % 初始温度为 1000
alpha = 0.95; % 温度衰减系数为 0.95
max_iter = 1000; % 最大迭代次数为 1000[x_best, f_best] = simulated_annealing(@f, lb, ub, init_temp, alpha, max_iter);
fprintf('最佳解:%f\n', x_best);
fprintf('最佳目标函数值:%f\n', f_best);

七、模拟退火算法优缺点

模拟退火算法的优点包括:

  1. 通用性和简单性:模拟退火算法的实现比较简单,通用性强,适合解决各种不同类型的问题,尤其是一维和多维的优化问题。
  2. 概率保证性:模拟退火算法具有概率意义上的全局最优解,即对于一般的问题,它最终都能收敛到全局最优解,而不仅仅是局部最优解。
  3. 鲁棒性强:模拟退火算法对初始解的依赖性不强,因此对问题的敏感度较低,具有较强的鲁棒性。
  4. 能够有效避免局部最优解:通过引入随机因素,模拟退火算法能够跳出局部最优解,向全局最优解靠近。

然而,模拟退火算法也存在一些缺点:

  1. 计算量大:模拟退火算法需要进行大量的迭代和计算,尤其在问题规模较大时,计算量会显著增加,导致算法的运行时间较长。
  2. 对参数敏感:模拟退火算法的参数选择对其性能影响较大,如果参数选择不当,可能会导致算法性能不佳。
  3. 对某些问题收敛速度慢:对于一些复杂的问题,模拟退火算法可能需要较长时间才能收敛到全局最优解。
  4. 参数降温过程复杂:模拟退火算法中的降温过程需要精心设计,如果降温过程不合理,可能会导致算法性能不佳。

综上所述,模拟退火算法在解决各种优化问题时具有一定的优势和适用性,但也存在一些需要改进的方面。在实际应用中,需要根据具体问题选择合适的算法参数和实现方式,以获得最佳的优化效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/240000.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32之OLED显示

一、模块介绍 1、常见的显示设备 LED、数码管、点阵、LCD屏(1602/12864)、OLED屏(消费电子) 2、OLED屏的概述 OLED&#xff0c;即有机发光二极管&#xff08;Organic Light-Emitting Diode&#xff09;&#xff0c;又称为有机电激光显示&#xff08;Organic Electroluminesenc…

机器学习算法 - 马尔可夫链

马尔可夫链&#xff08;Markov Chain&#xff09;可以说是机器学习和人工智能的基石&#xff0c;在强化学习、自然语言处理、金融领域、天气预测、语音识别方面都有着极其广泛的应用 > The future is independent of the past given the present 未来独立于过去&#xff…

Linux实操学习

Linux常用操作 一、帮助命令1. man1.1 基本语法1.2 快捷键1.3 注意事项 2. help2.1 基本语法2.2 注意事项 3. 常用快捷键 二、文件目录类1. 常规操作1.1 pwd1.2 cd1.3 ls 2. 文件夹操作2.1 mkdir2.2 rmdir 3. 文件操作3.1 touch3.2 cp3.3 rm3.4 mv 4. 文件查看4.1 cat4.2 more4…

四、任意文件读取漏洞

一、介绍 解释&#xff1a;任意文件读取漏洞就其本身来说就是&#xff0c;攻击者绕过网站防御者设置的防御&#xff0c;读取到了正常使用者不应该读取到的内容。网站开发者使用不同的语言&#xff0c;任意文件读取漏洞利用方式就不同。 二、不同开发语言的不同漏洞点 1.PHP …

Kali Linux保姆级教程|零基础从入门到精通,看完这一篇就够了!(附工具包)

作为一名从事网络安全的技术人员&#xff0c;不懂Kali Linux的话&#xff0c;连脚本小子都算不上。 Kali Linux预装了数百种享誉盛名的渗透工具&#xff0c;使你可以更轻松地测试、破解以及进行与数字取证相关的任何其他工作。 今天给大家分享一套Kali Linux资料合集&#xf…

2024年高校建设大数据实验室建设的意义

数据挖掘与大数据分析是以计算机基础为基础&#xff0c;以挖掘算法为核心&#xff0c;紧密面向行业应用的一门综合性学科。其主要技术涉及概率论与数理统计、数据挖掘、算法与数据结构、计算机网络、并行计算等多个专业方向&#xff0c;因此该学科对于实验室具有较高的专业要求…

构建未来教育:在线培训系统开发的技术探讨

随着远程学习的崛起和数字化教育的普及&#xff0c;在线培训系统的开发成为了现代教育的核心。本文将深入讨论在线培训系统的关键技术要点&#xff0c;涵盖前后端开发、数据库管理、以及安全性和身份验证等关键方面。 前端开发&#xff1a;提供交互性与用户友好体验 在构建在…

HTML--JavaScript--引入方式

啊哈~~~基础三剑看到第三剑&#xff0c;JavaScript HTML用于控制网页结构 CSS用于控制网页的外观 JavaScript用于控制网页的行为 JavaScript引入方式 引入的三种方式&#xff1a; 外部JavaScript 内部JavaScript 元素事件JavaScript 引入外部JavaScript 一般情况下网页最好…

【数据结构】常见八大排序算法总结

目录 前言 1.直接插入排序 2.希尔排序 3.选择排序 4.堆排序 5.冒泡排序 6.快速排序 6.1Hoare版本 6.2挖坑法 6.3前后指针法 6.4快速排序的递归实现 6.5快速排序的非递归实现 7.归并排序 8.计数排序&#xff08;非比较排序&#xff09; 9.补充:基数排序 10.总结…

【Java】十年老司机转开发语言,新小白从学习路线图开始

欢迎来到《小5讲堂》 大家好&#xff0c;我是全栈小5。 这是《Java》序列文章&#xff0c;每篇文章将以博主理解的角度展开讲解&#xff0c; 特别是针对知识点的概念进行叙说&#xff0c;大部分文章将会对这些概念进行实际例子验证&#xff0c;以此达到加深对知识点的理解和掌握…

【HTML5】 canvas 绘制图形

文章目录 一、基本用法二、用法详见2.0、方法属性2.1、绘制线条2.2、绘制矩形2.3、绘制圆形2.4、绘制文本2.5、填充图像 一、基本用法 canvas 标签&#xff1a;可用于在网页上绘制图形&#xff08;使用 JavaScript 在网页上绘制图像&#xff09;画布是一个矩形区域&#xff0c…

决战排序之巅(二)

决战排序之巅&#xff08;二&#xff09; 排序测试函数 void verify(int* arr, int n) 归并排序递归方案代码可行性测试 非递归方案代码可行性测试 特点分析 计数排序代码实现代码可行性测试 特点分析 归并排序 VS 计数排序&#xff08;Release版本&#xff09;说明1w rand( ) …

1 python计算机基础

计算机基础和环境搭建 1 计算机基础和环境搭建1.计算机基础1.1 基本概念1.2 编程语言1.3 编译器/解释器 2.学习编程的本质3.Python的介绍3.1 语言的分类3.2 Python3.3 Python的解释器种类&#xff08;了解&#xff09;3.4 CPython解释器的版本 4.环境搭建4.1 安装Python解释器4…

前端架构师需要具备哪些能力?

文章目录 公司一工作职责岗位要求 公司二岗位职责任职要求 公司三岗位职责任职要求 公司四工作职责任职要求 公司五职位职责任职要求 前端架构师需要具备的能力 我们先看看前端架构师的招聘要求。 公司一 工作职责 1、参与项目需求分析评审&#xff0c;负责核心功能详细设计…

计算机网络-VLAN间通信

之前复习了VLAN的概念以及几个接口类型。VLAN在二层可以实现广播域的划分&#xff0c;VLAN间可以实现二层通信&#xff0c;但是不能实现三层通信&#xff0c;需要借助其它方式。 一、概述 实际网络部署中一般会将不同IP地址段划分到不同的VLAN。同VLAN且同网段的PC之间可直接进…

1月17日代码随想录合并二叉树

617.合并二叉树 给你两棵二叉树&#xff1a; root1 和 root2 。 想象一下&#xff0c;当你将其中一棵覆盖到另一棵之上时&#xff0c;两棵树上的一些节点将会重叠&#xff08;而另一些不会&#xff09;。你需要将这两棵树合并成一棵新二叉树。合并的规则是&#xff1a;如果两…

ElasticSearch概述+SpringBoot 集成ES

ES概述 开源的、高扩展的、分布式全文检索引擎【站内搜索】 解决问题 1.搜索词是一个整体时&#xff0c;不能拆分&#xff08;mysql整体连续&#xff09; 2.效率会低&#xff0c;不会用到索引&#xff08;mysql索引失效&#xff09; 解决方式 进行数据的存储&#xff08;只存储…

支持华为GaussDB数据库的免费开源ERP:人力资源管理解决方案概述

开源智造所推出的Odoo SuperPeople数字化解决方案将HR和薪资数据与财务、项目规划、预算和采购流程连接起来&#xff0c;消除了多套系统给企业带来的信息孤岛问题。 ——复星集团 人力资源中心 高经理 一种更具吸引力、更有洞察力的人员管理方式 什么是开源智造Odoo的人力资源…

信驰达科技参与《汽车玻璃集成UWB数字钥匙发展研究白皮书》编制工作

为进一步探索汽车数字钥匙技术路线及开发思路&#xff0c;中国智能网联汽车产业创新联盟&#xff08;CAICV&#xff09;、福耀玻璃工业集团股份有限公司联合发起了《汽车玻璃集成UWB数字钥匙发展研究白皮书》研究工作。 2023年12月20日&#xff0c;由中国智能网联汽车产业创新…

Linux--部署 Tomcat 及其负载均衡

1.案例前置知识点 1&#xff09;Tomcat简介 名称由来&#xff1a;Tomcat最初是由 Sun的软件构架师詹姆斯邓肯戴维森开发的。后来他帮助将其变 为开源项目&#xff0c;并由Sun贡献给Apache软件基金会。由于大部分开源项目OReilly都会出一本相关的 书&#xff0c;并且将其封面设…