决战排序之巅(二)

决战排序之巅(二)

        • 排序测试函数 void verify(int* arr, int n)
    • 归并排序
      • 递归方案
          • 代码可行性测试
      • 非递归方案
          • 代码可行性测试
      • 特点分析
    • 计数排序
      • 代码实现
          • 代码可行性测试
      • 特点分析
    • 归并排序 VS 计数排序(Release版本)
      • 说明
        • 1w rand( ) 数据测试
        • 10w rand( ) 数据测试
        • 100w rand( ) 数据测试
        • 1000w rand( ) 数据测试
      • 测试代码
      • 结语

欢迎来到决战排序之巅栏目,
本期给大家带来的是归并排序与计数排序的实现与比较。
在上期决战排序之巅(一)中,给大家带来了插入排序(希尔) 与 选择排序(堆排) 的实现与比较,感兴趣的可以看看。

请添加图片描述

排序测试函数 void verify(int* arr, int n)

主要功能:测试arr数组中的顺序是否全为非升序的顺序。
代码如下:

void verify(int* arr, int n)
{for (int i = 1; i < n; i++){assert(arr[i] >= arr[i - 1]);}
}

如果arr数组中顺序不全为非升序,则assert()直接终止程序;
若全为非升序,则程序可通过该函数。

归并排序

基本思想:采用分治算法,将已有的有序子序列进行合并,得到完全有序的序列;即先使每个子序列有序,再使子序列所合并的序列有序。
归并排序的核心步骤就是:分解与合并。

递归方案

如下图所示:我们可以先将一组数据由大到小逐个分开,再依次合并。
下图绿线为分解,蓝线为合并。我们可以看到,排序数据分解时,当子序列内个数为1 时,不再分解;随后进行依次的合并,"1" "9" 合并为"1 9"的子序列,"5" "6"合并成"5 6"的体序列,同理可得"3 8" "2 7",再让子序列合并,"1 9 6 5"合并成"1 5 6 9""3 8""2 7"合并成"2 3 7 8"。最后两个字序列合并成"1 2 3 5 6 7 8 9"
至此,归并排序完毕。
在这里插入图片描述
具体代码,如下:

void MergeSort(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);assert(tmp);_MergeSort(a, 0, n - 1, tmp);free(tmp);
}

void MergeSort(int* a, int n)是我们排序的调用函数,因为他的参数形式不宜用递归实现,所以我们可以写一个子函数void _MergeSort(int* a,int begin,int end ,int* tmp)来实现主要程序的编写,如下:

void _MergeSort(int* a,int begin,int end ,int* tmp)
{if (begin >= end)return;int mid = (begin + end) / 2;_MergeSort(a, begin, mid, tmp);_MergeSort(a, mid+1, end, tmp);int left1 = begin, right1 = mid;int left2 = mid + 1, right2 = end;int i = 0;while (left1 <= right1 && left2 <= right2){if (a[left1] > a[left2])tmp[i++] = a[left2++];elsetmp[i++] = a[left1++];}while (left1 <= right1){tmp[i++] = a[left1++];}while (left2 <= right2){tmp[i++] = a[left2++];}memcpy(a + begin, tmp, i * sizeof(int));
}

我们先通过以下代码进行归并排序“分解”的实现

	if (begin >= end)return;	int mid = (begin + end) / 2;_MergeSort(a, begin, mid, tmp);_MergeSort(a, mid+1, end, tmp);

当子序列内个数为1 时,return 返回;当子序列内个数大于1 时,进行以下编写:
有递归可知,此时的小标区间为[begin , mid] 与 [mid + 1 , end]是排好序的子区间,所有此时我们只要将其合并好就可以了。

	int left1 = begin, right1 = mid;int left2 = mid + 1, right2 = end;int i = 0;while (left1 <= right1 && left2 <= right2){if (a[left1] > a[left2])tmp[i++] = a[left2++];elsetmp[i++] = a[left1++];}while (left1 <= right1){tmp[i++] = a[left1++];}while (left2 <= right2){tmp[i++] = a[left2++];}memcpy(a + begin, tmp, i * sizeof(int));

最后将tmp上的数据拷贝到a的[begin , end]区间即可。

代码可行性测试
void _test()
{int n = 100000000;int* arr = (int*)malloc(sizeof(int) * n);for (int i = 0; i < n; i++){arr[i] = rand();}MergeSort(arr, n);verify(arr, n);free(arr);
}

运行结果如下 :
在这里插入图片描述
程序通过verify(int* arr int n)函数,且成功运行,代码无误。

非递归方案

在非递归方案中我们可以利用循环来实现,主要实现过程如下视频所示:

归并排序思想

我们可以定义一个gap并且gap的初始置为1,用来表示子序列的最小个数为1,随后在整体排完相邻两个子序列后,gap乘以2,此时数组内小标区间为 [ n ∗ g a p , n ∗ ( g a p ∗ 2 − 1 ) ] ∪ [ 0 , g a p − 1 ] , n ∈ N + [n * gap , n * (gap * 2-1)]\cup[0 , gap-1] ,n\in N^+ [ngap,n(gap21)][0,gap1],nN+是有序的,如此循环直到, n ≤ g a p n\leq gap ngap时跳出循环,代码如下:

void MergeSortNonR(int* a,int n)
{int* tmp = (int*)malloc(sizeof(int) * n);assert(tmp);int gap = 1;while (n > gap){for (int i = 0; i < n; i += gap * 2){int begin1 = i, end1 = i + gap - 1;int begin2 = i + gap, end2 = i + gap * 2 - 1;int j = begin1;if (end1 >= n && begin2 >= n){break;}if (end2 >= n){end2 = n - 1;}while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[j++] = a[begin1++];}else{tmp[j++] = a[begin2++];}}while (begin1 <= end1){tmp[j++] = a[begin1++];}while (begin2 <= end2){tmp[j++] = a[begin2++];}memcpy( a + i, tmp + i, sizeof(int) * (end2 - i + 1));}gap *= 2;}free(tmp);
}

我们先看如何分解,利用gap来确定子序列的元数个数,再利用for循环来实现两个相邻子序列的排序(即下标区间[begin1,end1] , [begin2,end2]的排序)
注意:在分配完区间[begin1,end1] ,和[begin2,end2]后,我们要对区间范围的有效性进行检查,因为非递归的方案通过比较相邻的子序列,gap2的幂次方所增长,适用的数组长度也为2的幂次方,所以我们要对end1 , begin2 , end2进行检查,如果end1 , begin2 大于数组总个数n时,直接break即可,因为此时的[begin1,n-1]已经是有序的了;如果end2大于n则,令end2=n-1,此时我们只要排好[begin1,end2] , [begin2,n-1]即可,具体过程如下:

		for (int i = 0; i < n; i += gap * 2){int begin1 = i, end1 = i + gap - 1;int begin2 = i + gap, end2 = i + gap * 2 - 1;int j = begin1;if (end1 >= n && begin2 >= n){break;}if (end2 >= n){end2 = n - 1;}//合并过程}

合并过程与递归方案相同,但需要注意的是数组拷贝的时候,for循环依次拷贝一次。

代码可行性测试

在这里插入图片描述

程序通过verify(int* arr int n)函数,且成功运行,代码无误。

特点分析

特性:归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。
时间复杂度:O(N*logN)
空间复杂度:O(N)
稳定性:稳定

计数排序

基本思想:计数排序又称为鸽巢原理,是对哈希直接定址法的变形应用。

代码实现

实现步骤:

  1. 选出要排序数组a中的最值,再相减求出数组的相对范围 n = m a x − m i n + 1 n = max - min + 1 n=maxmin+1
  2. 用calloc开辟n个空间为tmp
  3. 利用i遍历a,让数组tmp[ a [ i ] − m i n a[i] - min a[i]min]++
  4. 最后,再遍历tmp , 此时tmp数组下标 + min就表示数据的大小,tmp[数组下标]表示该数据的个数,所以在此时为a直接赋值即可。
    具体代码如下:
void CountSort(int* a, int n)
{int max = a[0], min = a[0];int i = 0;for (i = 0; i < n; i++){if (max < a[i]){max = a[i];}if (min > a[i]){min = a[i];}}int* tmp = (int*)calloc((max - min + 1), sizeof(int));assert(tmp);for (i = 0; i < n; i++){tmp[a[i] - min]++;}int j = 0;for (i = 0; i < max - min + 1; i++){int count = tmp[i];while (count--){a[j++] = i + min;}}free(tmp);
}
代码可行性测试

在这里插入图片描述
程序通过verify(int* arr int n)函数,且成功运行,代码无误。

特点分析

特点分析:计数排序在数据范围集中时,效率很高,但是适用范围及场景有限(例如:小数,结构体,字符串无法比较)
时间复杂度:O(MAX(N,范围))
空间复杂度:O(范围)

归并排序 VS 计数排序(Release版本)

说明

以下会分别对1w,10w,100w,1000w的数据进行100次的排序比较,并计算出排一趟的平均值。

下面是用来生成随机数的代码,可以确保正数与负数的随机分布。

	for (i = 0; i < n; i++){if (rand() % 2){arr3[i] = arr2[i] = arr1[i] = -rand() + i;}else{arr3[i] = arr2[i] = arr1[i] = rand() - i;}}

介绍就到这里了,让我们来看看这100次排序中,谁才是你心目中的排序呢?
PS:100次只是一个小小的测试数据,有兴趣的朋友可以在自己电脑上测试更多的来比较哦。

1w rand( ) 数据测试

在这里插入图片描述

10w rand( ) 数据测试

在这里插入图片描述

100w rand( ) 数据测试

在这里插入图片描述

1000w rand( ) 数据测试

在这里插入图片描述

测试代码

void Test_MergeSort_CountSort()
{int n = 10000000;int count = 100;int* arr1 = numcreate(n);int* arr2 = numcreate(n);int* arr3 = numcreate(n);int time1 = 0, time2 = 0, time3 = 0;int tmp = count;while (tmp--){int i = 0;for (i = 0; i < n; i++){if (rand() % 2){arr3[i] = arr2[i] = arr1[i] = -rand() + i;}else{arr3[i] = arr2[i] = arr1[i] = rand() - i;}}int begin1 = clock();MergeSort(arr1, n);int end1 = clock();int begin2 = clock();MergeSortNonR(arr2, n);int end2 = clock();int begin3 = clock();CountSort(arr3, n);int end3 = clock();time1 += end1 - begin1;time2 += end2 - begin2;time3 += end3 - begin3;}printf("MergeSort: %.2f\n", (float)time1/count);printf("MergeSortNonR: %.2f\n", (float)time2 / count);printf("CountSort: %.2f\n", (float)time3 / count);free(arr1);free(arr2);free(arr3);
}

从结果来看,计数排序快于归并排序,但它的局限性无法比较小数,结构体与字符串;
再看归并排序,非递归类的要略胜一筹哦。

结语

看完之后,谁才是你心目中的排序呢?
欢迎留言,让我们一起来期待在下一期 《决战排序之巅(三)》。

以上就是本期的全部内容喜欢请多多关注吧!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/239986.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

1 python计算机基础

计算机基础和环境搭建 1 计算机基础和环境搭建1.计算机基础1.1 基本概念1.2 编程语言1.3 编译器/解释器 2.学习编程的本质3.Python的介绍3.1 语言的分类3.2 Python3.3 Python的解释器种类&#xff08;了解&#xff09;3.4 CPython解释器的版本 4.环境搭建4.1 安装Python解释器4…

前端架构师需要具备哪些能力?

文章目录 公司一工作职责岗位要求 公司二岗位职责任职要求 公司三岗位职责任职要求 公司四工作职责任职要求 公司五职位职责任职要求 前端架构师需要具备的能力 我们先看看前端架构师的招聘要求。 公司一 工作职责 1、参与项目需求分析评审&#xff0c;负责核心功能详细设计…

计算机网络-VLAN间通信

之前复习了VLAN的概念以及几个接口类型。VLAN在二层可以实现广播域的划分&#xff0c;VLAN间可以实现二层通信&#xff0c;但是不能实现三层通信&#xff0c;需要借助其它方式。 一、概述 实际网络部署中一般会将不同IP地址段划分到不同的VLAN。同VLAN且同网段的PC之间可直接进…

1月17日代码随想录合并二叉树

617.合并二叉树 给你两棵二叉树&#xff1a; root1 和 root2 。 想象一下&#xff0c;当你将其中一棵覆盖到另一棵之上时&#xff0c;两棵树上的一些节点将会重叠&#xff08;而另一些不会&#xff09;。你需要将这两棵树合并成一棵新二叉树。合并的规则是&#xff1a;如果两…

ElasticSearch概述+SpringBoot 集成ES

ES概述 开源的、高扩展的、分布式全文检索引擎【站内搜索】 解决问题 1.搜索词是一个整体时&#xff0c;不能拆分&#xff08;mysql整体连续&#xff09; 2.效率会低&#xff0c;不会用到索引&#xff08;mysql索引失效&#xff09; 解决方式 进行数据的存储&#xff08;只存储…

支持华为GaussDB数据库的免费开源ERP:人力资源管理解决方案概述

开源智造所推出的Odoo SuperPeople数字化解决方案将HR和薪资数据与财务、项目规划、预算和采购流程连接起来&#xff0c;消除了多套系统给企业带来的信息孤岛问题。 ——复星集团 人力资源中心 高经理 一种更具吸引力、更有洞察力的人员管理方式 什么是开源智造Odoo的人力资源…

信驰达科技参与《汽车玻璃集成UWB数字钥匙发展研究白皮书》编制工作

为进一步探索汽车数字钥匙技术路线及开发思路&#xff0c;中国智能网联汽车产业创新联盟&#xff08;CAICV&#xff09;、福耀玻璃工业集团股份有限公司联合发起了《汽车玻璃集成UWB数字钥匙发展研究白皮书》研究工作。 2023年12月20日&#xff0c;由中国智能网联汽车产业创新…

Linux--部署 Tomcat 及其负载均衡

1.案例前置知识点 1&#xff09;Tomcat简介 名称由来&#xff1a;Tomcat最初是由 Sun的软件构架师詹姆斯邓肯戴维森开发的。后来他帮助将其变 为开源项目&#xff0c;并由Sun贡献给Apache软件基金会。由于大部分开源项目OReilly都会出一本相关的 书&#xff0c;并且将其封面设…

2024年第二届“华数杯”国际大学生数学建模竞赛 (A题 MCM)| 废水扩散分析 |数学建模完整代码+建模过程全解全析

当大家面临着复杂的数学建模问题时&#xff0c;你是否曾经感到茫然无措&#xff1f;作为2022年美国大学生数学建模比赛的O奖得主&#xff0c;我为大家提供了一套优秀的解题思路&#xff0c;让你轻松应对各种难题。 让我们来看看华数杯的A题&#xff01; 完整内容可以在文章末…

OpenCV-Python(34):FAST算法

目标 理解 FAST 算法的基础使用OpenCV 中的FAST 算法相关函数进行角点检测 介绍 FAST算法&#xff08;Features from Accelerated Segment Test&#xff09;是一种用于在图像中快速检测角点的算法。它是一种基于像素的检测方法&#xff0c;具有高效、准确的特点&#xff0c;常…

基于信号完整性的PCB设计原则

最小化单根信号线质量的一些PCB设计建议 1. 使用受控阻抗线&#xff1b; 2. 理想情况下&#xff0c;所有信号都应该使用完整的电源或地平面作为其返回路径&#xff0c;关键信号则使用地平面作为返回路径&#xff1b; 3. 信号的返回参考面发生变化时&#xff0c;在尽可能接近…

压力测试+接口测试(工具jmeter)

jmeter是apache公司基于java开发的一款开源压力测试工具&#xff0c;体积小&#xff0c;功能全&#xff0c;使用方便&#xff0c;是一个比较轻量级的测试工具&#xff0c;使用起来非常简单。因 为jmeter是java开发的&#xff0c;所以运行的时候必须先要安装jdk才可以。jmeter是…

几内亚ECTN是什么?怎么办理?建议收藏!

几内亚ECTN是什么&#xff1f;怎么办理&#xff1f;建议收藏&#xff01; 一、去往几内亚的货物&#xff0c;从六月一日开始强制实施ECTN制度&#xff0c;取消原来并行的ENS制度。如若货物到港前没申请ECTN&#xff0c;几内亚海关将会强行扣货。 ECTN是英文&#xff1a;ELECTR…

Angular系列教程之自定义指令

文章目录 前言指令的基本概念在模板中使用指令总结 前言 在Angular中&#xff0c;指令是一种非常强大的工具&#xff0c;用于扩展HTML元素的功能和行为。它们允许我们创建可重用的组件&#xff0c;并在应用程序中的多个地方使用它们。本文将介绍Angular指令的基础知识&#xf…

散列函数,哈希表hash table

附上一句话&#xff1a;我知道大家可能曾经了解过这个散列表了&#xff0c;我发现&#xff0c;如果多看几个相关的视频&#xff0c;从不同的表述方式和不同的理解角度来理解这个问题&#xff0c;我会明白的更透彻&#xff0c;也有更多新的收获&#xff0c;尤其是对这个算法的应…

ElasticSearch降本增效常见的方法 | 京东云技术团队

Elasticsearch在db_ranking 的排名不断上升&#xff0c;其在存储领域已经蔚然成风且占有非常重要的地位。 随着Elasticsearch越来越受欢迎&#xff0c;企业花费在ES建设上的成本自然也不少。那如何减少ES的成本呢&#xff1f;今天我们就特地来聊聊ES降本增效的常见方法&#x…

Android 仿快手视频列表,RecyclerView与Banner联动效果

这是看到群里讨论过快手APP的一个观看他人视频列表的一个联动效果&#xff0c;但是并不是完全按照这个软件的效果来做的&#xff0c;只是参考&#xff0c;并不是完全仿照这个软件来做的&#xff0c;没时间去优化排版问题了&#xff0c;请见谅&#xff0c;如图&#xff1a; 实现…

ADA-YOLO:YOLOv8+注意力+Adaptive Head,mAP提升3%

生物医学图像分析中的目标检测和定位至关重要&#xff0c;尤其是在血液学领域&#xff0c;检测和识别血细胞对于诊断和治疗决策至关重要。虽然基于注意力的方法在各个领域中目标检测方面取得了显著的进展&#xff0c;但由于医学影像数据集的独特挑战&#xff0c;其在医学目标检…

cad的模型怎么打散导入3d---模大狮模型网

将CAD中的模型打散并导入3D建模软件&#xff0c;需要以下步骤&#xff1a; 将CAD中的模型进行分组或分层&#xff1a;在CAD中&#xff0c;将模型按照不同的组或层进行分组或分层。这样可以方便地控制每个部分的显示和隐藏&#xff0c;在导入3D建模软件后&#xff0c;也可以更方…

(超详细)2-YOLOV5改进-添加SimAM注意力机制

1、在yolov5/models下面新建一个SimAM.py文件&#xff0c;在里面放入下面的代码 代码如下&#xff1a; import torch import torch.nn as nnclass SimAM(torch.nn.Module):def __init__(self, e_lambda1e-4):super(SimAM, self).__init__()self.activaton nn.Sigmoid()self…