【机器学习】调配师:咖啡的完美预测

有一天,小明带着一脸期待找到了你这位数据分析大师。他掏出手机,屏幕上展示着一份详尽的Excel表格。“看,这是我咖啡店过去一年的数据。”他滑动着屏幕,“每个月的销售量、广告投入,还有当月的气温,我都记录下来了。我总觉得这之间有关联,但我就是说不清楚。你能帮我找出其中的奥秘吗?”
在这里插入图片描述

你微微一笑,接过手机扫了一眼数据。“没问题,小明。这些数据就像咖啡店的DNA,隐藏着它的生命密码。而我们要做的,就是用线性回归这把钥匙,去解锁这些密码。”

你打了个响指,仿佛已经胸有成竹。“想象一下,这个线性回归模型就像一个智能咖啡师。它会根据过去的经验,也就是这些数据,来学习如何冲泡出一杯完美的‘预测销售额’。就像咖啡师会根据咖啡豆的种类、研磨的粗细、水温的高低来调整冲泡方法一样,我们的模型也会根据销售量、广告投入和气温来调整它的‘冲泡配方’,从而给出最准确的预测。”
在这里插入图片描述

小明的眼睛亮了起来,仿佛看到了新的希望。“那太棒了!这样一来,我就能提前知道哪些月份生意会火爆,哪些月份需要加大广告投入,还能提前规划好库存,避免浪费。”

你点了点头,表示赞同。“没错,这就是数据分析的魅力所在。它不仅能告诉你过去发生了什么,还能帮你预测未来会发生什么。这样一来,你就能做出更明智的决策,让你的咖啡店更上一层楼。”

说完,你迫不及待地打开电脑,准备开始构建这个神奇的线性回归模型。你知道,一旦模型构建成功,在这里插入图片描述
小明和他的咖啡店将迎来一个全新的时代。
在这里插入图片描述

在接下来的时间里,你和小明一起投身于数据的海洋中。你们清洗数据、构建特征、训练模型,每一步都充满了挑战和乐趣。

实际应用机器学习源代码

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error# 小明的咖啡店在过去一年里收集了详细的运营数据,包括每月的销售量(Sales)、广告投入(Advertising)、平均气温(Temperature)以及对应的月度销售额(Monthly_Revenue)
data = pd.read_csv('coffee_shop_data.csv', header=0)# 分离出影响销售额的特征变量和目标变量
X = data[['Sales', 'Advertising', 'Temperature']]  # 输入特征:销售量、广告投入、平均气温
y = data['Monthly_Revenue']  # 目标变量:月销售额# 按照80%训练集与20%测试集的比例划分数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 使用线性回归模型对咖啡店的销售额进行预测训练
revenue_predictor = LinearRegression()
revenue_predictor.fit(X_train, y_train)# 训练好的模型用于预测测试集上的销售额
predictions = revenue_predictor.predict(X_test)# 评估模型性能,计算均方误差(MSE)
mse = mean_squared_error(y_test, predictions)
print(f"模型在测试集上的均方误差(MSE)是: {mse:.2f}")# 输出模型参数,了解各特征对销售额的影响程度
print(f"Coefficients (销售量、广告投入、平均气温对月销售额的影响系数): {revenue_predictor.coef_}")
print(f"Intercept (截距,即当所有特征值为0时的预测销售额): {revenue_predictor.intercept_}")# 假设下个月预计有1500杯的销售量、500元的广告投入,以及20℃的平均气温
next_month_conditions = np.array([[1500, 500, 20]])
predicted_revenue_next_month = revenue_predictor.predict(next_month_conditions)
print(f"根据模型预测,下个月的预期销售额为: {round(predicted_revenue_next_month[0],3)}元")# 可视化分析 - 广告投入与实际月销售额的关系图
plt.figure(figsize=(10, 6))
plt.scatter(data['Advertising'], data['Monthly_Revenue'], color='blue', label='实际数据点')
plt.plot(data['Advertising'], revenue_predictor.predict(data[['Sales', 'Advertising', 'Temperature']]), color='red',label='拟合直线')
plt.xlabel('广告投入')
plt.ylabel('月销售额')
plt.title('广告投入与月销售额关系')
plt.legend()
plt.show()# 可视化分析 - 测试集中真实月销售额与预测月销售额的对比图
plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_test, color='blue', label='实际测试数据点')
plt.scatter(y_test, predictions, color='red', label='预测数据点')
plt.xlabel('实际月销售额')
plt.ylabel('预测月销售额')
plt.title('实际与预测月销售额对比(测试集)')
plt.legend()
plt.show()# 注:在处理特征前,请确保已对不同尺度的特征进行了适当的预处理,如归一化或标准化,以提高模型的准确性。

完成这样预测的好处如下:

前瞻性决策:通过预测未来收入,咖啡店经理小明可以根据预测结果提前做出决策,比如调整库存、安排员工排班、制定营销策略等,以更好地适应预期的销售情况。

资源优化:根据预测收入,可以合理分配和控制成本。例如,在预测销售额较低时减少不必要的广告投入,或在预测销售额较高时增加原料储备,避免断货影响生意。

风险管理:预测有助于识别潜在的风险和机会。如果预测结果显示接下来的月收入可能下滑,小明就可以及时采取措施预防损失;反之,若预测收入增长,他则可抓住机遇进一步扩大市场。

绩效评估:实际收入与预测收入的对比分析可以帮助评估现有策略的效果,并据此改进业务模型。

计划与预算:基于预测数据,小明能够更准确地制定经营计划和财务预算,从而提高整体运营效率和盈利能力。
最终,当那个智能咖啡师——线性回归模型终于冲泡出第一杯“预测销售额”时,你们相视一笑,知道所有的付出都是值得的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/242347.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

day16 DOM(2)——获取设置表单的值

目录 操作表单元素属性H5自定义属性——data 操作表单元素属性 表单很多情况,也需要修改属性,比如点击眼睛,可以看到密码,本质是把表单类型转换成文本框正常的有属性有取值的,跟其它的标签属性没有区别 获取&#xff…

web蓝桥杯真题--11、蓝桥知识网

介绍 蓝桥为了帮助大家学习,开发了一个知识汇总网站,现在想设计一个简单美观的首页。本题请根据要求来完成一个首页布局。 准备 开始答题前,需要先打开本题的项目代码文件夹,目录结构如下: ├── css │ └──…

开源进程/任务管理服务Meproc使用之HTTP API

本文讲述如何使用开源进程/任务管理服务Meproc的HTTP API管理整个服务。 Meproc所提供的全部 API 的 URL 都是相同的。 http://ip:port/proc例如 http://127.0.0.1:8606/proc在下面的小节中,我们使用curl命令向您展示 API 的方法、参数和请求正文。 启动任务 …

C++I/O流——(4)格式化输入/输出(第二节)

归纳编程学习的感悟, 记录奋斗路上的点滴, 希望能帮到一样刻苦的你! 如有不足欢迎指正! 共同学习交流! 🌎欢迎各位→点赞 👍 收藏⭐ 留言​📝 含泪播种的人一定能含笑收获&#xff…

【前端设计】流光按钮

欢迎来到前端设计专栏,本专栏收藏了一些好看且实用的前端作品,使用简单的html、css语法打造创意有趣的作品,为网站加入更多高级创意的元素。 css body{height: 100vh;display: flex;justify-content: center;align-items: center;background…

使用 crypto-js 进行 AES 加解密操作

在前端开发中,数据的加密和解密是为了保障用户隐私和数据的安全性而常见的任务。AES(Advanced Encryption Standard)是一种对称密钥加密算法,被广泛用于保护敏感信息的传输和存储。本文将介绍 AES 加解密的基本原理,并…

智慧文旅运营综合平台:重塑文化旅游产业的新引擎

目录 一、建设意义 二、包含内容 三、功能架构 四、典型案例 五、智慧文旅全套解决方案 - 210份下载 在数字化浪潮席卷全球的今天,智慧文旅运营综合平台作为文化旅游产业与信息技术深度融合的产物,正逐渐显现出其强大的生命力和广阔的发展前景。 该…

二叉树的直径(LeetCode 543)

文章目录 1.问题描述2.难度等级3.热门指数4.解题思路参考文献 1.问题描述 给你一棵二叉树的根节点,返回该树的直径 。 二叉树的 直径 是指树中任意两个节点之间最长路径的长度 。这条路径可能经过也可能不经过根节点 root 。 两节点之间路径的长度由它们之间边数…

【Docker】实战多阶段构建 Laravel 镜像

作者主页: 正函数的个人主页 文章收录专栏: Docker 欢迎大家点赞 👍 收藏 ⭐ 加关注哦! 本节适用于 PHP 开发者阅读。Laravel 基于 8.x 版本,各个版本的文件结构可能会有差异,请根据实际自行修改。 准备 新…

cs231n assignment1——SVM

整体思路 加载CIFAR-10数据集并展示部分数据数据图像归一化,减去均值(也可以再除以方差)svm_loss_naive和svm_loss_vectorized计算hinge损失,用拉格朗日法列hinge损失函数利用随机梯度下降法优化SVM在训练集和验证集计算准确率&a…

【图解数据结构】顺序表实战指南:手把手教你详细实现(超详细解析)

🌈个人主页:聆风吟 🔥系列专栏:图解数据结构、算法模板 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 一. ⛳️线性表1.1 🔔线性表的定义1.2 🔔线性表的存储结构 二. ⛳️顺序表…

web前端项目-金山打字游戏【附源码】

金山打字 【金山打字】这是一个练习打字的游戏,当游戏开始后,界面从顶部不断落下内容为随机字母的方块,当按下相对应的按键时,就会清除对应方块。游戏难度会随着落下的速度加快而提高。玩家每次成功清除字母方块,都会…

spawn_group | spawn_group_template | linked_respawn

字段介绍 spawn_group | spawn_group_template 用来记录与脚本事件或boss战斗有关的 creatures | gameobjects 的刷新数据linked_respawn 用来将 creatures | gameobjects 和 boss 联系起来,这样如果你杀死boss, creatures | gameobjects 在副本重置之前…

六、数组(1)一维数组

所谓数组,就是一个集合,里面存放了相同类型的数据元素 特点1:数组中每个数据元素都是相同的数据类型 特点2:数组是由连续的内存位置组成的 一、一维数组的定义方式 1、数据类型 数组名[数组长度]; 2、数据类型 数组名[数组长度…

【JavaEE】_基于UDP实现网络通信

目录 1. 服务器 1.1 实现逻辑 1.2 代码 1.3 部分代码解释 2. 客户端 2.1 实现逻辑 2.2 代码 2.3 客户端部分代码解释 3. 程序运行结果 4. 服务器客户端交互逻辑 此篇内容为实现UDP版本的回显服务器echo server; 普通服务器:收到请求&#xff…

《WebKit 技术内幕》之五(3): HTML解释器和DOM 模型

3 DOM的事件机制 基于 WebKit 的浏览器事件处理过程:首先检测事件发生处的元素有无监听者,如果网页的相关节点注册了事件的监听者则浏览器会将事件派发给 WebKit 内核来处理。另外浏览器可能也需要处理这样的事件(浏览器对于有些事件必须响应…

【Linux】nc 网络诊断 | 文件传输 命令详解

目录 一、命令简介 二、命令使用 2.1 测试服务器 2.2 端口连通性测试 2.2.1tcp端口连通性测试 2.2.2udp端口连通性测试 2.3 文件及目录的传输 2.3.1 文件传输(TCP端口) 2.3.2 文件传输(UDP端口) 相关文章: 【网络】抓包工具Wireshark下载安装和基本使用教…

力扣343. 整数拆分(动态规划)

Problem: 343. 整数拆分 文章目录 题目描述思路解题方法复杂度Code 题目描述 思路 该题目可以抽象成动态规划中的爬楼梯模型,将整数的拆分类比为上台阶: 1.每个阶段可以从整数中划分出1、2、…k的一个整数 2.int dp[n 1] dp[i]表示为i的整数划分的最大…

怎么提升搜狗网站排名

在当今数字化时代,网站排名对于品牌、企业以及个人都至关重要。而对于许多网站来说,搜狗搜索引擎是一个重要的流量来源。为了在搜狗上取得更好的排名,不仅需要优化网站内容,还需要巧妙运用一些工具和技巧。在本文中,我…

Labview局部变量、全局变量、引用、属性节点、调用节点用法理解及精讲

写本章前想起题主初学Labview时面对一个位移台程序,傻傻搞不清局部变量和属性节点值有什么区别,概念很模糊。所以更新这篇文章让大家更具象和深刻的去理解这几个概念,看完记得点赞加关注喔~ 本文程序源代码附在后面,大家可以自行下…