粒子群算法求解港口泊位调度问题(MATLAB代码)

粒子群算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,它通过模拟鸟群或鱼群的行为来寻找最优解。在泊位调度问题中,目标是最小化所有船只在港时间的总和,而PSO算法可以帮助我们找到一个较优的调度方案。

泊位调度问题是指在有限数量的泊位资源下,安排船只的到港和离港时间,以最小化船只在港等待的时间。该问题存在多个约束条件,如泊位容量、船只到港和离港时间窗口等。

PSO算法的核心思想是通过模拟粒子在解空间中的移动来搜索最优解。每个粒子代表一个解,并根据自身的历史最佳解和群体的历史最佳解进行调整。粒子根据自身和邻域最优解的信息更新速度和位置,以逐渐靠近最优解。

在泊位调度问题中,每个粒子的位置可以表示为一个泊位调度方案,其中每个船只被分配到一个特定的泊位,并确定其到港和离港时间。粒子的速度和位置更新规则可以根据目标函数来定义,以使船只在港时间的总和最小化。

PSO算法的优点在于简单且易于实现,能够在高维解空间中找到较优解。然而,对于泊位调度问题这样的复杂问题,PSO算法可能会陷入局部最优解。为了克服这个问题,可以采用多种改进方法,如引入局部搜索机制或组合其他优化算法。

总结而言,粒子群算法是一种有效的优化算法,适用于解决泊位调度问题。通过调整粒子的速度和位置,并结合合适的目标函数,可以找到一个较优的泊位调度方案,以最小化船只在港时间的总和。然而,对于复杂的问题,仍然需要进一步的研究和改进。

流程如下:

数据: 

停泊时间:

船舶泊位

1#

2#

3#

4#

5#

6#

船1

3

3

3.290323

3.290323

3.290323

3.290323

船2

3.29

3.29

3.608387

3.608387

3.608387

3.608387

船3

3.35

3.35

3.674194

3.674194

3.674194

3.674194

船4

5

5

5.483871

5.483871

5.483871

5.483871

船5

1.94

1.94

2.127742

2.127742

2.127742

2.127742

船6

1.45

1.45

1.590323

1.590323

1.590323

1.590323

船7

0.97

0.97

1.063871

1.063871

1.063871

1.063871

船8

4.61

4.61

5.056129

5.056129

5.056129

5.056129

船9

5.06

5.06

5.549677

5.549677

5.549677

5.549677

船10

7.29

7.29

7.995484

7.995484

7.995484

7.995484

船11

2.68

2.68

2.939355

2.939355

2.939355

2.939355

船12

5.74

5.74

6.295484

6.295484

6.295484

6.295484

船13

0.65

0.65

0.712903

0.712903

0.712903

0.712903

船14

1.26

1.26

1.381935

1.381935

1.381935

1.381935

船15

0.81

0.81

0.888387

0.888387

0.888387

0.888387

船16

1.58

1.58

1.732903

1.732903

1.732903

1.732903

船17

0.77

0.77

0.844516

0.844516

0.844516

0.844516

船18

1

1

1.096774

1.096774

1.096774

1.096774

船19

3.1

3.1

3.4

3.4

3.4

3.4

船20

0.71

0.71

0.77871

0.77871

0.77871

0.77871

船21

0.97

0.97

1.063871

1.063871

1.063871

1.063871

船22

3.23

3.23

3.542581

3.542581

3.542581

3.542581

到港时间

到港时间

装卸量

0:00

93

3:00

102

3:20

104

3:20

155.25

6:00

60

6:00

45

6:20

30

8:00

143

8:00

157

9:00

226

10:00

83

10:30

178

11:00

20

12:00

39

12:00

25

14:40

49

14:40

24

15:00

31

15:00

96

18:50

22

21:10

30

22:00

100

装卸速度

装卸速度

泊位1

31

泊位2

31

泊位3

34

泊位4

35

泊位5

36

泊位6

37

程序结果:

粒子群算法优化得到最优成本

Valuebest =

          70.7209677419355

粒子群算法优化得到最优粒子

psobest =

  1 至 6 列

                        -1        -0.276376816044633        0.0110834051789061        -0.588322236509362        -0.871896419169566                         1

  7 至 12 列

         0.882043641594225         0.394648902367656         0.649790379151507                        -1       -0.0590250701437167                        -1

  13 至 18 列

                         1                         1         0.941078162307071                         1         0.925858029802935        -0.755714050637173

  19 至 24 列

         0.642324983266078                         1                         1                         1          6.33758011393659          5.85939735126611

  25 至 30 列

                      6.99          2.49649225428723          4.78659200827198                      6.99                      6.99          5.21051862147312

  31 至 36 列

          4.23951824644256                         1          2.42088917195685          3.73458639406582                      6.99                      6.99

  37 至 42 列

          2.24808981777205          5.21345040727043          4.55442530362547          1.11174406517414                         1                         1

  43 至 44 列

          1.69713330740672          6.04705817521954

y =

          70.7209677419355

G =

                         1                         6                         0          3.29032258064516

                        10                         1                         9                     16.29

                        12                         3                      10.5          16.7954838709677

                         5                         4                         6          8.12774193548387

                        18                         1                     16.29                     17.29

                         4                         2          3.33333333333333          8.33333333333333

                         2                         5                         3          6.60838709677419

                        11                         2                        10                     12.68

                         3                         6          3.33333333333333          7.00752688172043

                         8                         5                         8          13.0561290322581

                        19                         1                     17.29                     20.39

                         9                         4          8.12774193548387          13.6774193548387

                         7                         6          7.00752688172043          8.07139784946237

                        17                         4          14.6666666666667          15.5111827956989

                        15                         2                     12.68                     13.49

                         6                         6          8.07139784946237          9.66172043010753

                        13                         6                        11          11.7129032258064

                        14                         6                        12           13.381935483871

                        16                         5          14.6666666666667          16.3995698924731

                        20                         1                     20.39                      21.1

                        21                         1          21.1666666666667          22.1366666666667

                        22                         6                        22          25.5425806451613

Stime =

                         0          3.29032258064516

                         3          6.60838709677419

          3.33333333333333          7.00752688172043

          3.33333333333333          8.33333333333333

                         6          8.12774193548387

          8.07139784946237          9.66172043010753

          7.00752688172043          8.07139784946237

                         8          13.0561290322581

          8.12774193548387          13.6774193548387

                         9                     16.29

                        10                     12.68

                      10.5          16.7954838709677

                        11          11.7129032258064

                        12           13.381935483871

                     12.68                     13.49

          14.6666666666667          16.3995698924731

          14.6666666666667          15.5111827956989

                     16.29                     17.29

                     17.29                     20.39

                     20.39                      21.1

          21.1666666666667          22.1366666666667

                        22          25.5425806451613

S =

     1    10    12     5    18     4     2    11     3     8    19     9     7    17    15     6    13    14    16    20    21    22

T =

     6     5     6     2     4     6     6     5     4     1     2     3     6     6     2     5     4     1     1     1     1     6

Stime =

                         0          3.29032258064516

                         3          6.60838709677419

          3.33333333333333          7.00752688172043

          3.33333333333333          8.33333333333333

                         6          8.12774193548387

          8.07139784946237          9.66172043010753

          7.00752688172043          8.07139784946237

                         8          13.0561290322581

          8.12774193548387          13.6774193548387

                         9                     16.29

                        10                     12.68

                      10.5          16.7954838709677

                        11          11.7129032258064

                        12           13.381935483871

                     12.68                     13.49

          14.6666666666667          16.3995698924731

          14.6666666666667          15.5111827956989

                     16.29                     17.29

                     17.29                     20.39

                     20.39                      21.1

          21.1666666666667          22.1366666666667

                        22          25.5425806451613

>>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/248139.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

GitLab 中国发行版如何设置镜像拉取策略?

最近在用极狐GitLab(极狐GitLab 可以理解为 GitLab 在中国的发行版) CI/CD 的时候遇到一个问题:CI/CD 中有一个 stage 需要拉取 dockerhub 上的镜像,但是由于 dockerhub 在国内的访问不是很顺畅,经常发生 timeout 的情…

Spring Boot + security + jwt 测试安全策略

一、测试概述 主要目的是测试security的用法。因测试搭建mysql和redis比较麻烦,所以我这里将自定义的jwt和用户信息缓存到程序的内存中。 本人测试的项目比较混乱,Spring Boot父类只标出有用的依赖。其子类用的版本为jdk11。后续会继续深入oauth2&#x…

【Linux 基础】常用基础指令(上)

文章目录 一、 创建新用户并设置密码二、ls指令ls指令基本概念ls指令的简写操作 三、pwd指令四、cd指令五、touch指令六、rm指令七、mkdir指令八、rmdir 指令 一、 创建新用户并设置密码 ls /home —— 查看存在多少用户 whoami —— 查看当前用户名 adduser 用户名 —— 创建新…

公司宣传电子画册的制作方法

​制作公司宣传电子画册是一种非常有效的方式,可以展示公司的形象和产品,同时也可以吸引更多的潜在客户。不仅低碳环保,还省了不少人力和财力,只要一个二维码、一个链接就能随时随地访问公司的宣传画册。以下是一些制作电子画册的…

(2024,双流编码器,文本引导的风格迁移,调制,FFT 和低频滤波)FreeStyle:使用扩散模型进行文本引导风格迁移

FreeStyle: Free Lunch for Text-guided Style Transfer using Diffusion Models 公和众和号:EDPJ(进 Q 交流群:922230617 或加 VX:CV_EDPJ 进 V 交流群) 目录 0. 摘要 3. 方法 3.1 LDM 3.2 FreeStyle 的模型结构…

springBoot配置文件加密

很多项目的配置文件里&#xff0c;包括数据库密码、缓存密码、还有一些第三方服务的Key都是直接配在里面&#xff0c;没有做任何加密处理&#xff01; 本次我用SpringBoot 集成 Jasypt 对数据库加密以及踩坑经验 1.集成依赖&#xff0c;我用的是目前最新的版本3.0.4版本 <…

常用芯片学习——AMS1117芯片

AMS1117 1A 低压差线性稳压器 使用说明 AMS1117 是一款低压差线性稳压电路&#xff0c;该电路输出电流能力为1A。该系列电路包含固定输出电压版本和可调输出电压版本&#xff0c;其输出电压精度为士1.5%。为了保证芯片和电源系统的稳定性&#xff0c;XBLWAMS1117 内置热保护和…

语音生成、写作增强、论文辅助、英文学习,AI原生应用精彩推荐一箩筐!

崭新的2024年已然降临&#xff0c;飞桨星河社区再次涌现出诸多精彩纷呈的AI原生应用&#xff0c;快来一同探索&#xff0c;发现这些应用带来的无限惊喜与可能吧&#xff01; 语音生成&#xff1a;10音色自由选择 应用介绍 本应用基于ERNIE SDK和语音合成工具&#xff0c;可以…

树--二叉树(C语言纯手凹)

目录 目录 1.什么是树&#xff1f;&#xff08;不深入&#xff0c;仅做了解&#xff09; 2.树的表示方式 2.1孩子兄弟表示法&#xff08;左孩子右兄弟&#xff09; 2.2孩子表示法 2.3双亲表示法 3.什么是二叉树 4.二叉树分类 4.1满二叉树 4.2完全二叉树 4.3二叉搜索树…

获取鼠标点击图片时候的坐标,以及利用html 中的useMap 和area 实现图片固定位置的点击事件

一 编写原因 应项目要求&#xff0c;需要对图片的固定几个位置分别做一个点击事件&#xff0c;响应不同的操作&#xff0c;如下图&#xff0c;需要点击红色区域&#xff0c;弹出不同的提示框&#xff1a; 二 获取点击图片时候的坐标 1. 说明 实现这以上功能的前提是需要确定需…

for循坏

签名&#xff1a;但行好事&#xff0c;莫问前程。 文章目录 前言一、循坏的四要素二、for循环的格式三、for循坏的小练习1、打印1-100以内的偶数&#xff0c;并求和2、输出所有的水仙花数3、求两个数的最大公约数和最小公倍数3.1最大公约数3.2最小公倍数 4、双层for循坏打印九九…

linux安装python3.11

yum install gcc-c zlib-devel bzip2-devel openssl* ncurses-devel sqlite* readline-devel tk-devel gdbm-devel libpcap* xz-devel libffi-devel -y 下载地址 https://www.python.org/ftp/python/3.11.7/Python-3.11.7.tar.xz 上传python文件&#xff0c;解压&#xff…

kubernetes-快速部署一套k8s集群

1、前置知识点 1.1 生产环境可部署Kubernetes集群的两种方式 目前生产部署Kubernetes集群主要有两种方式&#xff1a; kubeadm Kubeadm是一个K8s部署工具&#xff0c;提供kubeadm init和kubeadm join&#xff0c;用于快速部署Kubernetes集群。 二进制包 从github下载发行…

进程的执行过程

文章目录 前言一、进程的执行过程二、进程的示例2.1 示例1所有进程必须有限或者与时钟相关2.2 示例2多进程共享变量2.3 示例3仿真在0时刻结束2.4 示例4仿真变量保持不变 总结 前言 本文主要记录一下进程的执行过程&#xff0c;并通过一些例子&#xff0c;帮助进一步理解这个过…

活字格V9获取图片失败bug,报错404,了解存储路径,已改为批量上传和批量获取

项目场景&#xff1a; 问题描述 原因分析&#xff1a; 解决方案&#xff1a; 完成了批量上传功能&#xff0c;这插件真的很方便 于是写了个批量获取附件的js代码&#xff0c;我真厉害 项目场景&#xff1a; 活字格V9版本获取图片链接Upload 【9.0.103.0】图片上传的存储路…

境外投资企业备案结果公开名录列表数据

境外投资企业备案结果公开名录列表数据 1、时间&#xff1a;更新至2023年10月16日 2、指标&#xff1a;境外投资企业_机构、境内投资者名称、投资国别地区 3、来源&#xff1a;商务部 4、指标解释 境外投资企业&#xff08;机构&#xff09;备案结果公开名录列表&#xff…

USB-C显示器:未来显示技术的革新者

随着科技的不断发展&#xff0c;显示技术也在不断进步&#xff0c;而USB-C显示器作为最新的显示技术&#xff0c;正在引领着显示行业的发展潮流。USB-C显示器具有许多优点&#xff0c;如高速传输、便捷连接、节能环保等&#xff0c;使其成为未来显示技术的革新者。 一、USB-C显…

[PHP]严格类型

PHP: 类型声明 - Manual

部署YUM仓库服务

一、yum仓库 1. yum简介 yum是一个基于RPM包&#xff08;是Red-Hat Package Manager红帽软件包管理器的缩写&#xff09;构建的软件更新机制&#xff0c;能够自动解决软件包之间的依赖关系。 为什么会有依赖关系的发生 因为linux本身就是以系统简洁为自身优势&#xff0c;所以…

基于 Docker 搭建 Uptime-Kuma 一个极简风的应用监控

GitHub&#xff1a;https://github.com/louislam/uptime-kuma 一、uptime-kuma 介绍 Demo&#xff1a;https://uptime.wuhanjiayou.cn/ uptime-kuma 是一款开源的监控工具, 支持 TCP / PING / HTTP 等多种监控方式&#xff0c;可监测网站&#xff0c;数据库&#xff0c;Docker…