忘记 RAG:拥抱Agent设计,让 ChatGPT 更智能更贴近实际

RAG(检索增强生成)设计模式通常用于开发特定数据领域的基于实际情况的ChatGPT。

然而,重点主要是改进检索工具的效率,如嵌入式搜索、混合搜索和微调嵌入,而不是智能搜索。

这篇文章介绍了一种新的方法,灵感来自人类研究方法,涉及多种搜索技术,观察中间结果,不断完善和重试,然后才提供回应。

通过利用智能代理设计,本文提出构建一个更智能、更扎实的ChatGPT,超越传统RAG模型的局限性。

RAG模式和限制

标准RAG模式实施概述:

  • 该过程始于用户的问题或对话的查询创建,通常是通过提示的语言模型(LLM)完成的。这通常被称为查询重述步骤。
  • 然后将此查询发送到搜索引擎,搜索引擎返回相关的知识(检索)。
  • 然后,检索到的信息会通过包含用户问题的提示进行增强,并转发到LLM(增强)。
  • 最后,LLM 对用户的查询做出了回应(生成)。

 RAG的限制

  • 在RAG模式中,检索、增强和生成由单独的流程管理。每个流程可能由具有不同提示的LLM来促进。

    然而,与用户直接交互的第1001代通常最清楚如何回答用户的问题。

    检索LLM可能不会像生成LLM那样解释用户意图,从而提供不必要的信息,可能会妨碍其做出回应的能力。
  • 检索是针对每个问题执行一次,没有来自生成LLM的任何反馈循环。

    如果检索结果不相关,可能是由于搜索查询或搜索词不佳等因素,生成LLM缺乏纠正的机制,可能会诉诸捏造答案。
  • 提供的检索上下文一经确定即不可更改,也无法扩展。

    例如,如果研究结果表明需要进一步调查,比如检索到一个提及需要进一步检索的文件,这方面没有规定。
  • RAG模式不支持多步骤研究。

智能代理模型

智能代理模型从人类研究方法中汲取灵感,当回答一个没有即时知识的问题时。在这个过程中,可能会进行一次或多次搜索,以收集有用的信息,然后提供最终答案。

每次搜索的结果都可以决定是否需要进一步调查,如果需要,还可以确定接下来搜索的方向。

这个迭代过程会持续进行,直到我们认为我们已经积累了足够的知识来回答,或者得出我们无法找到足够信息来回应的结论。

有时,研究结果可能会进一步澄清用户意图和查询范围。

为了复制这种方法,建议开发一个由语言模型(LLM)驱动的智能代理,用于与用户进行对话。

代理自主确定何时需要使用外部工具进行研究,制定一个或多个搜索查询,进行研究,审查结果,并决定是否继续进一步研究或向用户寻求澄清。

直到代理认为自己已经准备好向用户提供答案,这个过程才会持续进行。

 实施

使用Azure OpenAI的函数调用功能,实现一个能够自主使用搜索工具定位所需信息以协助用户请求的代理变得更加简单。

这一特性单独简化了RAG模式的传统实现,其中查询的改写、扩展和生成是分开处理的,如前所述。

代理人利用系统定义的角色和目标与用户互动,同时意识到可用的搜索工具。

当代理需要查找它所不具备的知识时,它会制定一个搜索查询,并向搜索引擎发出信号,以检索所需的答案。

这个过程不仅让人想起人类的行为,而且比RAG模式更高效,RAG模式中知识检索是一个单独的过程,无论是否需要,都会向聊天机器人提供信息。

实施这一能力:

  1. 定义人物角色、预期行为以及要使用的工具,何时使用它。

用 JSON 格式定义函数规范,包括函数和参数描述。

有趣的是,“用于搜索知识库的搜索查询”参数描述起着至关重要的作用。它指导LLMs根据对话中用户所需的帮助来制定合适的搜索查询。

此外,搜索查询参数可以描述并限制为遵循特定的工具格式,比如Lucene查询格式。还可以添加额外的参数用于诸如过滤等任务。

实现函数调用流程

在这个时刻,我们已经开发出一个能够进行独立搜索的智能代理。

然而,要真正创建一个能够执行更复杂的研究任务,如多步骤和自适应执行的智能代理,我们需要实现一些额外的能力。幸运的是,这个实施过程可以很简单直接。

创建智能研究代理的增强功能

在系统消息中添加代理计划、行动、观察和调整的能力

附加的指示表示,如果需要,机器人应该重试并更改问题。此外,它表示机器人应该审查搜索结果以指导下一次搜索,并在必要时采用多步骤方法。

这假设了搜索工具可以被多次调用。

由于LLM无法自行重复此过程,我们需要使用应用程序逻辑来管理。我们可以通过将整个过程放入循环中来实现这一点。当模型准备好给出最终答案时,循环退出:

这是智能代理在演示场景中的表现:

问题是比较两种产品之间的一个特性。每种产品的特性都存储在单独的文档中。为了做到这一点,我们的代理人执行两个搜索查询:

  • X100与Z200无线电0的功率配置文件
  • 无线电0的X100功率配置文件

第一个查询是一种贪婪的方法,因为代理希望有一个包含比较的文档。事实并非如此,因为搜索查询没有返回关于X100的足够信息,所以它添加了专门针对X100的第二个查询。

如果这个问题交给经典的RAG解决方案,它将无法找到一个好的答案,因为它会在第一个查询处停止。

 结束

实施代理模型可以大大增强基于ChatGPT的解决方案。这是因为该模型具有智能能力,可以测试各种策略,并根据观察到的结果改进其方法。

 参考文献

  • 这篇文章的完整代码实现可以在这里找到
  • 知识密集型自然语言处理任务的检索增强生成 arXiv:2005.11401 [cs.CL]
  • OpenAI的功能调用:Function calling — OpenAI API

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/252575.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VScode上无法运行TSC命令,Typescript

如何解决问题 第一步:使用 winx 快捷键,会出现如下弹窗,鼠标左键单击Windows PowerShell 即可打开shell 第二步:运行 set-ExecutionPolicy RemoteSigned 命令,在询问更改执行策略的时候选择敲Y或者A 第三步&#xff…

2024美赛预测算法 | 回归预测 | Matlab基于WOA-LSSVM鲸鱼算法优化最小二乘支持向量机的数据多输入单输出回归预测

2024美赛预测算法 | 回归预测 | Matlab基于WOA-LSSVM鲸鱼算法优化最小二乘支持向量机的数据多输入单输出回归预测 目录 2024美赛预测算法 | 回归预测 | Matlab基于WOA-LSSVM鲸鱼算法优化最小二乘支持向量机的数据多输入单输出回归预测预测效果基本介绍程序设计参考资料 预测效果…

Vue学习之使用HBuilderX创建并使用vue3.0项目

Vue学习之使用HBuilderX创建并使用vue3.0项目 下文将简述如何使用HBuilderX创建并使用vue3.0项目,包含项目创建、目录介绍、如何引用组件、首页自定义设置。 1、创建vue3.0项目 具体操作之前章节已经阐述过不在冗余介绍,创建时选择vue3项目即可。vue2…

【leetcode题解C++】77.组合 and 216.组合总和III and 17.电话号码的字母组合

77. 组合 给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。 你可以按 任何顺序 返回答案。 示例 1: 输入:n 4, k 2 输出: [[2,4],[3,4],[2,3],[1,2],[1,3],[1,4], ] 示例 2: 输入&#xff1a…

决策树的相关知识点

📕参考:ysu老师课件西瓜书 1.决策树的基本概念 【决策树】:决策树是一种描述对样本数据进行分类的树形结构模型,由节点和有向边组成。其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出&#xff…

验证码倒计时:用户界面的小细节,大智慧

欢迎来到我的博客,代码的世界里,每一行都是一个故事 验证码倒计时:用户界面的小细节,大智慧 前言为什么需要验证码倒计时防止滥用:用户心理: 设计考量可见性:友好性:适应性&#xff…

macOS Sonoma 14系统安装包

macOS Sonoma 14是苹果公司最新推出的操作系统,为Mac用户带来了全新的使用体验。Sonoma是苹果继Catalina之后的又一重要更新,它在改善系统性能、增加新功能、优化用户界面等方面做出了显著贡献。 macOS Sonoma 14系统有许多令人兴奋的新功能和改进&…

文心一言4.0API接入指南

概述 文心一言是百度打造出来的人工智能大语言模型,具备跨模态、跨语言的深度语义理解与生成能力,文心一言有五大能力,文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成,其在搜索问答、内容创作生成、智能办公等众多…

ShardingSphere 5.x 系列【7】元数据持久化

有道无术,术尚可求,有术无道,止于术。 本系列Spring Boot 版本 3.1.0 本系列ShardingSphere 版本 5.4.0 源码地址:https://gitee.com/pearl-organization/study-sharding-sphere-demo 文章目录 概述2. 单机模式2.1 H22.2 MySQL3. 集群模式3.1 ZooKeeper3.2 Nacos3.3 Cons…

管理类联考-复试-全流程演练-导航页

文章目录 整体第一步:学校导师两手抓——知己知彼是关键学校校训历史 导师你对导师的研究方向有什么认知。 第二步:面试问题提前背——押题助沟通英文面试经典问题——出现概率:100%自我介绍——出现概率:100%为什么选择这个专业&…

C++力扣题目377--组合求和VI 爬楼梯进阶版 322--零钱兑换 279完全平方数

377. 组合总和 Ⅳ 力扣题目链接(opens new window) 难度:中等 给定一个由正整数组成且不存在重复数字的数组,找出和为给定目标正整数的组合的个数。 示例: nums [1, 2, 3]target 4 所有可能的组合为: (1, 1, 1, 1) (1, 1, 2) (1, 2, …

MATLAB | 绘图复刻(十四) | 右侧对齐桑基图,及工具函数SSankey更新

hey 真的好久不见了,本期既是一期绘图复刻教程,也是我写的工具函数的版本更新,本期复刻的图片来自《Nature》: Elmarakeby, H.A., Hwang, J., Arafeh, R. et al. Biologically informed deep neural network for prostate cancer…

ideaIU-2023.2.1安装教程

ideaIU-2023.2.1安装教程 一、ideaIU-2023.2.1安装1.1 下载IdeaIU-2023.2.1安装包1.2 安装ideaIU-2023.2.1 二、ideaIU-2023.2.1激活 💖The Begin💖点点关注,收藏不迷路💖 一、ideaIU-2023.2.1安装 1.1 下载IdeaIU-2023.2.1安装包…

LLM应用开发与落地:使用gradio十分钟搭建聊天UI

一、背景 如果你是做LLM应用开发的,特别是做后端开发,你一定会遇到怎么快速写一个聊天UI界面来调试prompt或agent的问题。这时候的你可能在苦恼中,毕竟react.js, next.js, css, html也不是每个人都那么熟练,对吧?即使…

性能实测:分布式存储 ZBS 与集中式存储 HDS 在 Oracle 数据库场景表现如何

作者:深耕行业的 SmartX 金融团队 金鑫 在金融客户的基础架构环境中,HDS 是一种被广泛使用的存储解决方案。作为集中式存储的代表之一,HDS 拥有高性能、高可用性和可扩展性的企业级存储特点,适用于实时数据处理、虚拟化和灾难备份…

【C语言】贪吃蛇 详解

该项目需要的技术要点 C语言函数、枚举、结构体、动态内存管理、预处理指令、链表、Win32API等。 由于篇幅限制 和 使知识模块化, 若想了解 使用到的 Win32API 的知识:请点击跳转:【Win32API】贪吃蛇会使用到的 Win32API 目录 1. 贪吃蛇游…

数据分析基础之《pandas(5)—文件读取与存储》

一、概述 1、我们的数据大部分存在于文件当中,所以pandas会支持复杂的IO操作,pandas的API支持众多文件格式,如CSV、SQL、XLS、JSON、HDF5 二、CSV 1、读取csv文件 read_csv(filepath_or_buffer, sep,, delimiterNone) 说明: fi…

Mac OS中创建适合网络备份的加密镜像文件:详细步骤与参数选择

这篇文章提供了在Mac OS中创建适合网络备份的加密镜像文件的详细步骤,同时探讨了在选择相关参数时的关键考虑因素,以确保用户能够安全、高效地存储和保护重要数据。 创建步骤 在Mac OS Monterey中,你可以使用“磁盘工具”(Disk …

代码随想录算法训练营第25天 | 216.组合总和III ,17.电话号码的字母组合

回溯章节理论基础: https://programmercarl.com/%E5%9B%9E%E6%BA%AF%E7%AE%97%E6%B3%95%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html 216.组合总和III 题目链接:https://leetcode.cn/problems/combination-sum-iii/ 思路: 本题就是在[1,2,3,4,5,6,7,…

ElasticSearch查询语句用法

查询用法包括:match、match_phrase、multi_match、query_string、term 1.match 1.1 不同字段权重 如果需要为不同字段设置不同权重,可以考虑使用bool查询的should子句来组合多个match查询,并为每个match查询设置不同的权重 {"query&…