【深度学习】:滴滴出行-交通场景目标检测

清华大学驭风计划课程链接 

学堂在线 - 精品在线课程学习平台 (xuetangx.com)

代码和报告均为本人自己实现(实验满分),只展示主要任务实验结果,如果需要详细的实验报告或者代码可以私聊博主,接实验技术指导1对1

有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~

案例5:滴滴出行-交通场景目标检测 

相关知识点:目标检测、开源框架的配置和使用(mmdetection, mmcv) 

1 任务和数据简介

      本次案例将使用深度学习技术来完成城市交通场景下的目标检测任务,案例所使用的数据集由滴滴出行提供,基于D2-City大规模行车记录视频数据集[1],经过视频抽帧等预处理步骤得到。数据集共包含12,000张图像,每张图像的大小为1080×1920或720×1280,已划分为训练集(10,000张)、验证集(1,000张)、测试集(1,000张),其中训练集和验证集提供了检测标签,测试集仅提供图像,用于提交后测试模型效果。本数据集共包含12个待检测的物体类别,包括小汽车、公交车、自行车、行人等,具体定义及示例如图1所示。本任务的目标是在给定的交通场景图像中,尽可能完整、准确地检测出所有要求的物体,检测结果示例如图2所示。关于数据的更多细节可参考D2-City文献[1].

      为了方便使用,数据集的标注信息已被预处理成MS-COCO格式,MS-COCO是通用物体检测领域最常用的数据集,如需深入理解数据集格式,请自行学习:MS-COCO数据集官网[2]、MS-COCO数据集文献[3]、MS-COCO标注格式[4]. 模型的评估指标也使用MS-COCO常用指标mAP(mean average precision),请自行学习其定义及计算方式(无需自己实现):mAP定义[5],mAP计算方式[6][7]。

参考程序及使用说明

      本次案例提供了完整、可供运行的参考程序,选取了带FPN[8]结构的Faster R-CNN[9]模型,基于MMDetection物体检测框架[10]实现,各程序简介如下:

lfaster_rcnn_r50_fpn_1x_didi.py为模型配置文件,安装MMDetection后置于mmdetection/configs/faster_rcnn路径下;

ldidi_detection.py为数据集配置文件,置于mmdetection/configs/_base_/datasets路径下,并将data_root变量修改为数据集所在路径;

ltest.json为测试数据集文件信息,置于mmdetection/[数据集所在路径]/dataset_release路径下,在测试集上做推理时会用到;

ldidi_demo.ipynb用于可视化模型的检测结果。

参考程序的使用步骤及说明:

l自行安装MMDetection最新版(v3.2.0)及其全部依赖库,包括PyTorch等(MMDetection GitHub: [10],安装指南: [11]);学习必要的使用说明:MMDetection文档[12] (请务必仔细阅读Getting Started章节);

3实验结果

1,使用 Faster R-CNN 原始代码跑通,得到结果如下

在模型在一般条件下的性能,使用 Average Precision (AP) @[ IoU=0.50:0.95 |
area=all | maxDets=100 ] ,它是在多个 IoU 阈值范围内综合考虑了所有目标大小
的性能。在这种情况下,数值为 0.331 ,我觉得这个数值更具有平均代表性。

2,尝试其他检测算法

在这一部分我选择了 CascadeR-NN 检测算法进行尝试,训练结果如下
从图中可以看出 mMAP 6 项中有 4 项都比使用检测算法 Faster R-CNN 要高,
造成这样的原因 我认为是 Cascade R-CNN Faster R-CNN 的扩展,它引入了
级联式的检测器,通过级联式的策略来进一步提高检测精度。 Cascade R-CNN
常在需要更高精度的任务中表现出色

3,尝试其他网络结构的检测算法

这一部分我选择的 base model 里面的 ssd300.py ,里面使用了 VGG16 网络结构
并且是单阶段检测器,单阶段检测器通常比双阶段(如 Faster R-CNN )更快,因
为它们在单个前向传递中执行检测和定位,实际训练结果如下。

4,在优化器和学习率上进行调整尝试提升效果

这一部分我使用了 Adam 优化器和 0.0001 的学习率用 CascadeR-NN 检测算法进
行训练,训练结果如下

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/254608.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在 Next 中, ORM 框架 Prisma 使用

Prisma 介绍 Prisma 是一个 ORM 框架,主要用于 Node.js 或 TypeScript 作为后端开发的应用,主要有三部分组成: Prisma Client:自动生成且类型安全的查询构建器,适用于 Nodex.js 和 TS;Prisma Migrate: 迁…

使用Softing edgeConnector模块将云轻松连接到Siemens PLC

一 工业边缘的连接解决方案 云服务提供商 (CSP) 引入了服务和功能,以简化基于云的工业物联网解决方案的实施。Azure Industrial IoT Platform或AWS IoT SiteWise支持标准协议和接口,例如OPC UA或MQTT。但是,如果您希望在典型的旧改项目中连接…

UML之在Markdown中使用Mermaid绘制类图

1.UML概述 UML(Unified modeling language UML)统一建模语言,是一种用于软件系统分析和设计的语言工具,它用于帮助软件开发人员进行思考和记录思路。 类图是描述类与类之间的关系的,是UML图中最核心的。类图的是用于…

工业笔记本丨行业三防笔记本丨亿道加固笔记本定制丨极端温度优势

工业笔记本是专为在恶劣环境条件下工作而设计的高度耐用的计算机设备。与传统消费者级笔记本电脑相比,工业笔记本在极端温度下展现出了许多优势。本文将探讨工业笔记本在极端温度环境中的表现,并介绍其优势。 耐高温性能: 工业笔记本具有更高的耐高温性…

FastDFS安装并整合Openresty

FastDFS安装 一、环境--centos7二、FastDFS--tracker安装2.1.下载2.2.FastDFS安装环境2.3.安装FastDFS依赖libevent库2.4.安装libfastcommon2.5.安装 libserverframe 网络框架2.6.tracker编译安装2.7.文件安装位置介绍2.8.错误处理2.9.配置FastDFS跟踪器(Tracker)2.10.启动2.11…

win32编程系统BUG(Win32 API中的WM_SETTEXT消息)

由于频繁使用Win32 API中的WM_SETTEXT消息,导致内存占用直线上升。 暂未找到有效解决方案。

【原创 附源码】Flutter海外登录--Tiktok登录最详细流程

最近接触了几个海外登录的平台,踩了很多坑,也总结了很多东西,决定记录下来给路过的兄弟坐个参考,也留着以后留着回顾。更新时间为2024年2月7日,后续集成方式可能会有变动,所以目前的集成流程仅供参考&#…

排序算法---快速排序

原创不易,转载请注明出处。欢迎点赞收藏~ 快速排序是一种常用的排序算法,采用分治的策略来进行排序。它的基本思想是选取一个元素作为基准(通常是数组中的第一个元素),然后将数组分割成两部分,其中一部分的…

JAVA设计模式之模版方法模式详解

模板方法模式 1 模板方法模式介绍 模板方法模式(template method pattern)原始定义是:在操作中定义算法的框架,将一些步骤推迟到子类中。模板方法让子类在不改变算法结构的情况下重新定义算法的某些步骤。 模板方法中的算法可以理解为广义上的业务逻辑…

了解海外云手机的多种功能

随着社会的高度发展,海外云手机成为商家不可或缺的工具,为企业出海提供了便利的解决方案。然而,谈及海外云手机,很多人仍不了解其强大功能。究竟海外云手机有哪些功能,可以为我们做些什么呢? 由于国内电商竞…

C++类和对象(上)

目录 1.面向对象和面向过程初步认识 2.类的引入 3.类的定义 3.1类的定义方法 3.2成员变量的命名规则 4.类的访问限定符及封装 4.1类的访问限定符 4.2类的声明和定义分离 4.3封装 5.类的实例化 6.类对象模型 6.1计算类的大小 6.2类对象的存储方式猜测 7.this指针 …

Python初学者学习记录——python基础综合案例:数据可视化——动态柱状图

一、案例效果 通过pyecharts可以实现数据的动态显示,直观的感受1960~2019年世界各国GDP的变化趋势 二、通过Bar构建基础柱状图 反转x轴和y轴 标签数值在右侧 from pyecharts.charts import Bar from pyecharts.options import LabelOpts# 构建柱状图对象 bar Bar()…

基于图像掩膜和深度学习的花生豆分拣(附源码)

目录 项目介绍 图像分类网络构建 处理花生豆图片完成预测 项目介绍 这是一个使用图像掩膜技术和深度学习技术实现的一个花生豆分拣系统 我们有大量的花生豆图片,并以及打好了标签,可以看一下目录结构和几张具体的图片 同时我们也有几张大的图片&…

年假作业day2

1.打印字母图形 #include<stdio.h> #include<string.h> int main(int argc, const char *argv[]) { int i,j; char k; for(i1;i<7;i) { for(j1;j<i;j) { printf("%c",_); } for(j0,…

Javaweb之SpringBootWeb案例之异常处理功能的详细解析

3. 异常处理 3.1 当前问题 登录功能和登录校验功能我们都实现了&#xff0c;下面我们学习下今天最后一块技术点&#xff1a;异常处理。首先我们先来看一下系统出现异常之后会发生什么现象&#xff0c;再来介绍异常处理的方案。 我们打开浏览器&#xff0c;访问系统中的新增部…

ARM PAC/BTI/MTE三剑客精讲与实战

一、PAC指针认证精讲与实战 思考 1、什么是栈溢出攻击&#xff1f;什么是代码重用攻击&#xff1f;区别与联系&#xff1f; 2、栈溢出攻击的软&硬件缓解技术有哪些&#xff1f;在TF-A&OPTEE上的应用&#xff1f; 3、什么是ROP攻击&#xff1f;对ROP攻击的缓解技术&…

idea(2023.3.3 ) spring boot热部署,修改热部署延迟时间

1、添加依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-devtools</artifactId><optional>true</optional> </dependency>载入依赖 2、设置编辑器 设置两个选项 设置热部署更新延迟时…

LabVIEW热电偶自动校准系统

设计并实现一套基于LabVIEW平台的工业热电偶自动校准系统&#xff0c;通过自动化技术提高校准效率和精度&#xff0c;降低人力成本&#xff0c;确保温度测量的准确性和可靠性。 工业生产过程中&#xff0c;温度的准确测量对产品质量控制至关重要。传统的热电偶校准方式依赖人工…

H12-821_73

73.某台路由器Router LSA如图所示&#xff0c;下列说法中错误的是&#xff1f; A.本路由器的Router ID为10.0.12.1 B.本路由器为DR C.本路由器已建立邻接关系 D.本路由器支持外部路由引入 答案&#xff1a;B 注释&#xff1a; LSA中的链路信息Link ID&#xff0c;Data&#xf…

【大数据】Flink 中的 Slot、Task、Subtask、并行度

Flink 中的 Slot、Task、Subtask、并行度 1.并行度2.Task 与线程3.算子链与 slot 共享资源组4.Task slots 与系统资源5.总结 我们在使用 Flink 时&#xff0c;经常会听到 task&#xff0c;slot&#xff0c;线程 以及 并行度 这几个概念&#xff0c;对于初学者来说&#xff0c;这…