政安晨:在Jupyter中【示例演绎】Matplotlib的官方指南(二){Image tutorial}·{Python语言}

咱们接着上一篇,这次咱们讲使用Matplotlib绘制图像的简短尝试。

我的这个系列的上一篇文章在这里:

政安晨:在Jupyter中【示例演绎】Matplotlib的官方指南(一){Pyplot tutorial}icon-default.png?t=N7T8https://blog.csdn.net/snowdenkeke/article/details/136096870

简介

Matplotlib是一个用于绘制图表的Python库,它包含了丰富的图形绘制功能,其中,Matplotlib的Image功能是用于处理和显示图像数据的模块。

使用Matplotlib的Image功能,可以读取、展示和处理图像数据,它支持常见的图像格式,如JPEG、PNG等,并提供了各种方法和函数来操作图像数据。

要读取图像数据,可以使用imread()函数,它可以将图像文件加载到一个NumPy数组中。加载后的图像数据可以通过imshow()函数来显示。

Matplotlib的Image功能还提供了一系列的图像处理函数,如调整图像大小、裁剪、旋转、滤波等。这些函数可以在图像数据上进行操作,并返回处理后的图像数据。

除了基本的图像处理功能外,Matplotlib的Image功能还提供了一些高级的特性,如图像的融合、图像的绘制和叠加、图像的透明度调整等,这些功能可以应用于各种图像处理和视觉化任务中。

总之,Matplotlib的Image功能提供了丰富而强大的图像处理和显示功能,使得用户可以方便地处理和展示图像数据,无论是简单的图像操作还是复杂的图像处理任务,Matplotlib的Image功能都能提供灵活和高效的解决方案。

启动命令

让咱们启动IPython。

它是标准Python提示的一个非常好的增强功能,并且与Matplotlib非常紧密地关联在一起。可以直接在shell上启动IPython,也可以在Jupyter Notebook中启动(其中IPython作为一个运行内核)。

启动IPython后,我们现在需要连接到一个图形用户界面事件循环。

这告诉IPython在哪里(以及如何)显示图形。要连接到GUI循环,请在IPython提示符处执行%matplotlib魔术命令。关于此命令的详细信息,请参阅IPython文档中有关GUI事件循环的部分。

如果您正在使用Jupyter Notebook,相同的命令也可以使用,但人们通常将特定的参数用于%matplotlib魔术命令:

%matplotlib inline

咱们依旧在Conda虚拟环境中启动Jupyter Notebook:

这将打开内联绘图,绘图图形将显示在你的笔记本中。这对交互性有重要的影响。

对于内联绘图,在输出绘图的单元格下面的单元格中的命令不会影响绘图。

例如,无法从创建绘图的单元格下面的单元格中更改色图。

然而,对于其他后端,如打开一个单独窗口的Qt,下面的单元格将更改绘图 - 它是内存中的一个活动对象。

本篇将使用Matplotlib的隐式绘图接口pyplot。

这个接口维护全局状态,非常适用于快速简便地尝试不同的绘图设置。另一种选择是显式接口,更适合于大型应用程序开发。

现在,让我们开始隐式方法的学习

from PIL import Imageimport matplotlib.pyplot as plt
import numpy as np

将图像数据导入到NumPy数组中

Matplotlib依赖Pillow库来加载图像数据。

下面是我们要使用的图像:

这是一张24位RGB的PNG图像(每个颜色通道的位数为8位)。

根据获得数据的方式,您可能会遇到其他类型的图像,最常见的是包含透明度的RGBA图像,或者单通道灰度(亮度)图像。

我们使用Pillow来打开图像(使用PIL.Image.open),然后立即将PIL.Image.Image对象转换为8位(dtype=uint8)的numpy数组。

img = np.asarray(Image.open('./stinkbug.png'))
print(repr(img))

(小伙伴们可以将这张图像拷贝到工作目录中)

我的执行如下:

每个内部列表代表一个像素,在这里,对于一个 RGB 图像,有 3 个值。由于这是一张黑白图片,R、G 和 B 都是相似的。一个 RGBA 图像(其中 A 代表 alpha 或透明度)每个内部列表有 4 个值,而一个简单的亮度图像只有一个值(因此只是一个 2D 数组,而不是一个 3D 数组)。对于 RGB 和 RGBA 图像,Matplotlib 支持 float32 和 uint8 数据类型。对于灰度图像,Matplotlib 只支持 float32。如果你的数组数据不符合上述描述,你需要重新缩放它。

将numpy数组绘制为图像

您刚才已经将数据存储在一个numpy数组中(通过导入或生成)。

我们可以使用Matplotlib的imshow()函数来显示它,在这里,我们将获取绘图对象,这个对象可以方便地在提示符下操作绘图。

imgplot = plt.imshow(img)

我的执行如下:

        (您还可以绘制任何NumPy数组。

将伪彩色方案应用于图像绘图

伪彩色可以是增强对比度和更轻松地可视化数据的有用工具,当使用投影仪展示数据时,这尤其有用-它们的对比度通常很差。

伪彩色只与单通道、灰度、亮度图像相关。我们目前有一个RGB图像,由于R、G和B都相似(可在上方或数据中自行查看),我们可以使用数组切片来选择数据的一个通道(您可以在Numpy教程中了解更多信息)。

lum_img = img[:, :, 0]
plt.imshow(lum_img)

现在,对于一张亮度(2D,无色彩)图像,会应用默认的色彩映射表(也称为查找表,LUT)。默认的色彩映射表被称为viridis。还有很多其他选择。

plt.imshow(lum_img, cmap="hot")

我的执行如下:

请注意,您还可以使用set_cmap()方法来更改现有绘图对象的颜色映射:

imgplot = plt.imshow(lum_img)
imgplot.set_cmap('nipy_spectral')

注意:

请记住,在使用内联后端的Jupyter Notebook中,无法对已呈现的图进行更改。如果您在一个单元格中创建了imgplot,则不能在以后的单元格中调用set_cmap()并期望更早的绘图发生变化。确保您将这些命令一起输入一个单元格中。plt命令不会更改之前单元格中的绘图。

还有许多其他的颜色映射方案可供选择,请查看颜色映射的列表和图像。

颜色标度参考

在图表中添加一个颜色条是有助于了解颜色所代表的价值的。

imgplot = plt.imshow(lum_img)
plt.colorbar()

我的执行:

检查特定的数据范围

有时候,您可能希望增强图像的对比度,或者在牺牲不太变化或不重要的颜色细节的情况下,扩大特定区域的对比度。一个很好的工具来找到有趣的区域是直方图。为了创建我们图像数据的直方图,我们使用hist()函数。

plt.hist(lum_img.ravel(), bins=range(256), fc='k', ec='k')

通常,图像中“有趣”的部分通常在峰值附近,通过裁剪峰值上方和/或下方的区域,可以获得额外的对比度,在我们的直方图中,高端似乎没有太多有用的信息(图像中没有太多白色物体),让我们调整上限,以便我们有效地“放大”直方图的一部分。  

我们通过设置colormap限制clim来实现这一点。

可以通过在调用imshow时传递一个clim关键字参数来实现这一点:

plt.imshow(lum_img, clim=(0, 175))

这也可以通过调用返回的图像绘制对象的set_clim()方法来实现,但是在使用Jupyter Notebook时,请确保在与绘图命令相同的单元格中进行操作,否则它不会更改先前单元格中的绘图。

imgplot = plt.imshow(lum_img)
imgplot.set_clim(0, 175)

数组插值方案

插值计算了像素的颜色或值,根据不同的数学方案,计算出像素“应该”是什么。

一个常见的应用场景是调整图像的大小,像素的数量发生了变化,但你希望保留相同的信息。

由于像素是离散的,存在着缺失的空间,插值就是用来填充这个空间的方法,这就是为什么当你放大图像时,图像有时会出现像素化的效果。当原始图像和放大后的图像之间的差异越大时,效果就更加明显,让我们来缩小一下我们的图像,我们有效地丢弃了一些像素,只保留了一小部分,现在当我们绘制它时,这些数据被放大到屏幕上的尺寸,旧的像素不再存在,计算机必须绘制像素来填充那个空间。

我们将使用"pillow"库来加载图片并调整图片的大小。

img = Image.open('./stinkbug.png')
img.thumbnail((64, 64))  # resizes image in-place
imgplot = plt.imshow(img)

在这里,我们使用默认的插值方法(“nearest”),因为我们没有给imshow()函数传递任何插值参数。

让我们尝试一些其他的词。这是“双线性”的意思:

imgplot = plt.imshow(img, interpolation="bilinear")

和双三次插值:

imgplot = plt.imshow(img, interpolation="bicubic")

双三次插值经常用于放大照片 - 人们倾向于模糊而不是像素化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/258805.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Flex布局简介及微信小程序视图层View详解

目录 一、Flex布局简介 什么是flex布局? flex属性 基本语法和常用属性 Flex 布局技巧 二、视图层View View简介 微信小程序View视图层 WXML 数据绑定 列表渲染 条件渲染 模板 WXSS 样式导入 内联样式 选择器 全局样式与局部样式 WXS 示例 注意事项…

深入理解lambda表达式

深入理解ASP.NET Core中的中间件和Lambda表达式 var builder WebApplication.CreateBuilder(args); var app builder.Build(); app.Use(async (context, next) > { // Add code before request. await next(context);// Add code after request.}); 这段C#代码是用于设…

论文阅读:GamutMLP A Lightweight MLP for Color Loss Recovery

这篇文章是关于色彩恢复的一项工作,发表在 CVPR2023,其中之一的作者是 Michael S. Brown,这个老师是加拿大 York 大学的,也是 ISP 领域的大牛,现在好像也在三星研究院担任兼职,这个老师做了很多这种类似的工…

C++数据结构与算法——双指针法

C第二阶段——数据结构和算法,之前学过一点点数据结构,当时是基于Python来学习的,现在基于C查漏补缺,尤其是树的部分。这一部分计划一个月,主要利用代码随想录来学习,刷题使用力扣网站,不定时更…

STM32——OLED菜单

文章目录 一.补充二. 二级菜单代码 简介:首先在我的51 I2C里面有OLED详细讲解,本期代码从51OLED基础上移植过来的,可以先看完那篇文章,在看这个,然后按键我是用的定时器扫描不会堵塞程序,可以翻开我的文章有单独的定时…

免费chatgpt使用

基本功能如下: https://go.aigcplus.cc/auth/register?inviteCode3HCULH2UD

TensorRT转换onnx的Transpose算子遇到的奇怪问题

近来把一个模型导出为onnx并用onnx simplifier化简后转换为TensorRT engine遇到非常奇怪的问题,在我们的网络中有多个检测头时,转换出来的engine的推理效果是正常的,当网络中只有一个检测头时,转换出来的engine的推理效果奇差&…

OpenCV-42 直方图均匀化

目录 一、直方图均匀化原理 二、直方图均匀化在OpenCV中的运用 一、直方图均匀化原理 直方图均匀化是通过拉伸像素强度的分布范围,使得在0~255灰阶上的分布更加均匀,提高图像的对比度。达到改善图像主管视觉效果的目的。对比度较低的图像适合使用直方…

Flink理论—容错之状态

Flink理论—容错之状态 在 Flink 的框架中,进行有状态的计算是 Flink 最重要的特性之一。所谓的状态,其实指的是 Flink 程序的中间计算结果。Flink 支持了不同类型的状态,并且针对状态的持久化还提供了专门的机制和状态管理器。 Flink 使用…

HCIA-HarmonyOS设备开发认证V2.0-轻量系统内核基础-互斥锁mux

目录 一、互斥锁基本概念二、互斥锁运行机制三、互斥锁开发流程四、互斥锁使用说明五、互斥锁接口六、代码分析(待续...) 一、互斥锁基本概念 互斥锁又称互斥型信号量,是一种特殊的二值性信号量,用于实现对共享资源的独占式处理。…

Nginx (window)2024版 笔记 下载 安装 配置

前言 Nginx (engine x) 是一款轻量级的 Web 服务器 、反向代理(Reverse Proxy)服务器及电子邮件(IMAP/POP3)代理服务器。 反向代理方式是指以代理服务器来接受 internet 上的连接请求,然后将请求转发给内部网络上的服…

C++ //练习 6.3 编写你自己的fact函数,上机检查是否正确。

C Primer(第5版) 练习 6.3 练习 6.3 编写你自己的fact函数,上机检查是否正确。 环境:Linux Ubuntu(云服务器) 工具:vim 代码块 /********************************************************…

数据结构~二叉树(基础知识)

上一篇博客我们对树有了初步了解与学习,这篇我将初步学习二叉树!!(新年快乐!) 目录 二叉树 1、定义: 2、特点: 3、基本形态: 4、二叉树的种类: &…

精工电联:定制精工线缆,赋能科技互联---致力于为客户提供卓越的连接线缆和连接器产品

精工电联 “定制精工线缆 ,赋能科技互联”,精工电联致力于为高科技产业提供全方位、多维度的集成线缆解决方案。凭借深厚的研发实力和丰富的行业经验,精工电联已经成功地在工控设备、医疗设备、人工智能、新能源领域、轨道交通和超声波设备等…

数学建模【非线性规划】

一、非线性规划简介 通过分析问题判断是用线性规划还是非线性规划 线性规划:模型中所有的变量都是一次方非线性规划:模型中至少一个变量是非线性 非线性规划在形式上与线性规划非常类似,但在数学上求解却困难很多 线性规划有通用的求解准…

实战 | 使用CNN和OpenCV实现数字识别项目(步骤 + 源码)

导 读 本文主要介绍使用CNN和OpenCV实现数字识别项目,含详细步骤和源码。 前 言 在当今世界,深度学习和图像处理技术正在各个应用领域得到利用。在这篇博文中,我们将使用卷积神经网络 (CNN) 和 OpenCV 库完成数字识别项目。我们将逐步掌握该项目如何执行。 项目准…

Git 初学

目录 一、需求的产生 二、版本控制系统理解 1. 认识版本控制系统 2. 版本控制系统分类 (1)集中式版本控制系统 缺点: (2)分布式版本控制系统 三、初识 git 四、git 的使用 例:将 “ OLED文件夹 ”…

Nuxt3+Vue3(Composition API)+TS+Vite+Ant Design Vue 搭建

最近官网搭建选择了nuxtjs,由于框架更新了,其中语法也有很多变化,中间遇到了一些问题点做下总结。 nuxt3官方文档地址:https://nuxt.com/docs/getting-started/installation 安装 在安装Nuxt3之前,你需要保证你的nod…

如何使用iptables或者firewalld配置Linux系统的防火墙策略

在网络安全中,防火墙是一种关键的安全设备,用于保护计算机网络免受恶意攻击和未经授权的访问。在Linux系统中,我们可以使用iptables或者firewalld来配置防火墙策略。本文将介绍如何使用这两种工具来配置Linux系统的防火墙策略,包括…

java8-重构、测试、调试

8.1.1 改善代码的可读性 改善代码的可读性到底意味着什么?我们很难定义什么是好的可读性,因为这可能非常主观。通常的理解是,“别人理解这段代码的难易程度”。改善可读性意味着你要确保你的代码能非常容易地被包括自己在内的所有人理解和维护。为了确保…