【电路笔记】-LR串联电路

LR串联电路

文章目录

  • LR串联电路
    • 1、概述
    • 2、示例1

所有线圈、电感器、扼流圈和变压器都会在其周围产生磁场,由电感与电阻串联组成,形成 LR 串联电路。

1、概述

在本节有关电感器的第一个文章中,我们简要介绍了电感器的时间常数,指出流过电感器的电流不会瞬时变化,而是会以恒定速率增加,该恒定速率由内部的自感反电动势决定。 感应线圈。

换句话说,电路中的电感器阻止电流 ( i i i) 通过它。 虽然这是完全正确的,但我们在教程中假设它是一个理想的电感器,没有与其线圈绕组相关的电阻或电容。

然而,在现实世界中,“所有”线圈,无论是扼流圈、螺线管、继电器还是任何绕线元件,无论电阻有多小,都始终具有一定的电阻。 这是因为用于制造它的实际线圈匝数使用具有电阻值的铜线。

然后,出于现实世界的目的,我们可以将我们的简单线圈视为“电感”L 与“电阻”R 串联。换句话说,形成一个 LR 串联电路。

LR 串联电路基本上由电感器 L 与电阻器 R 串联连接组成。电阻“R”是构成电感器线圈的线匝或环路的直流电阻值。 考虑下面的 LR 串联电路。

在这里插入图片描述

LR串联电路

上述LR串联电路连接在恒压源(电池)和开关之间。 假设开关 S S S 一直打开,直到在时间 t = 0 t = 0 t=0 时闭合,然后保持永久闭合,产生“阶跃响应”型电压输入。 电流 i 开始流过电路,但不会快速上升至由 V / R V / R V/R 比率(欧姆定律)确定的最大值 I m a x I_{max} Imax

这一限制因素是由于磁通量的增长而导致电感器内存在自感电动势(楞次定律)。 一段时间后,电压源中和了自感电动势的影响,电流变得恒定,并且感应电流和磁场减小到零。

我们可以使用基尔霍夫电压定律 (KVL) 来定义电路周围存在的各个电压降,然后希望用它来为我们提供电流的表达式。

基尔霍夫电压定律 (KVL) 为我们提供:

在这里插入图片描述

电阻器 R R R 两端的电压降为 I × R I \times R I×

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/258812.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

相机图像质量研究(31)常见问题总结:图像处理对成像的影响--图像差

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结:光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结:光学结构对成…

C++初阶(十一) list

一、list的介绍及使用 1.1 list的介绍 list的文档介绍 1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。 2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点…

政安晨:在Jupyter中【示例演绎】Matplotlib的官方指南(二){Image tutorial}·{Python语言}

咱们接着上一篇,这次咱们讲使用Matplotlib绘制图像的简短尝试。 我的这个系列的上一篇文章在这里: 政安晨:在Jupyter中【示例演绎】Matplotlib的官方指南(一){Pyplot tutorial}https://blog.csdn.net/snowdenkeke/ar…

Flex布局简介及微信小程序视图层View详解

目录 一、Flex布局简介 什么是flex布局? flex属性 基本语法和常用属性 Flex 布局技巧 二、视图层View View简介 微信小程序View视图层 WXML 数据绑定 列表渲染 条件渲染 模板 WXSS 样式导入 内联样式 选择器 全局样式与局部样式 WXS 示例 注意事项…

深入理解lambda表达式

深入理解ASP.NET Core中的中间件和Lambda表达式 var builder WebApplication.CreateBuilder(args); var app builder.Build(); app.Use(async (context, next) > { // Add code before request. await next(context);// Add code after request.}); 这段C#代码是用于设…

论文阅读:GamutMLP A Lightweight MLP for Color Loss Recovery

这篇文章是关于色彩恢复的一项工作,发表在 CVPR2023,其中之一的作者是 Michael S. Brown,这个老师是加拿大 York 大学的,也是 ISP 领域的大牛,现在好像也在三星研究院担任兼职,这个老师做了很多这种类似的工…

C++数据结构与算法——双指针法

C第二阶段——数据结构和算法,之前学过一点点数据结构,当时是基于Python来学习的,现在基于C查漏补缺,尤其是树的部分。这一部分计划一个月,主要利用代码随想录来学习,刷题使用力扣网站,不定时更…

STM32——OLED菜单

文章目录 一.补充二. 二级菜单代码 简介:首先在我的51 I2C里面有OLED详细讲解,本期代码从51OLED基础上移植过来的,可以先看完那篇文章,在看这个,然后按键我是用的定时器扫描不会堵塞程序,可以翻开我的文章有单独的定时…

免费chatgpt使用

基本功能如下: https://go.aigcplus.cc/auth/register?inviteCode3HCULH2UD

TensorRT转换onnx的Transpose算子遇到的奇怪问题

近来把一个模型导出为onnx并用onnx simplifier化简后转换为TensorRT engine遇到非常奇怪的问题,在我们的网络中有多个检测头时,转换出来的engine的推理效果是正常的,当网络中只有一个检测头时,转换出来的engine的推理效果奇差&…

OpenCV-42 直方图均匀化

目录 一、直方图均匀化原理 二、直方图均匀化在OpenCV中的运用 一、直方图均匀化原理 直方图均匀化是通过拉伸像素强度的分布范围,使得在0~255灰阶上的分布更加均匀,提高图像的对比度。达到改善图像主管视觉效果的目的。对比度较低的图像适合使用直方…

Flink理论—容错之状态

Flink理论—容错之状态 在 Flink 的框架中,进行有状态的计算是 Flink 最重要的特性之一。所谓的状态,其实指的是 Flink 程序的中间计算结果。Flink 支持了不同类型的状态,并且针对状态的持久化还提供了专门的机制和状态管理器。 Flink 使用…

HCIA-HarmonyOS设备开发认证V2.0-轻量系统内核基础-互斥锁mux

目录 一、互斥锁基本概念二、互斥锁运行机制三、互斥锁开发流程四、互斥锁使用说明五、互斥锁接口六、代码分析(待续...) 一、互斥锁基本概念 互斥锁又称互斥型信号量,是一种特殊的二值性信号量,用于实现对共享资源的独占式处理。…

Nginx (window)2024版 笔记 下载 安装 配置

前言 Nginx (engine x) 是一款轻量级的 Web 服务器 、反向代理(Reverse Proxy)服务器及电子邮件(IMAP/POP3)代理服务器。 反向代理方式是指以代理服务器来接受 internet 上的连接请求,然后将请求转发给内部网络上的服…

C++ //练习 6.3 编写你自己的fact函数,上机检查是否正确。

C Primer(第5版) 练习 6.3 练习 6.3 编写你自己的fact函数,上机检查是否正确。 环境:Linux Ubuntu(云服务器) 工具:vim 代码块 /********************************************************…

数据结构~二叉树(基础知识)

上一篇博客我们对树有了初步了解与学习,这篇我将初步学习二叉树!!(新年快乐!) 目录 二叉树 1、定义: 2、特点: 3、基本形态: 4、二叉树的种类: &…

精工电联:定制精工线缆,赋能科技互联---致力于为客户提供卓越的连接线缆和连接器产品

精工电联 “定制精工线缆 ,赋能科技互联”,精工电联致力于为高科技产业提供全方位、多维度的集成线缆解决方案。凭借深厚的研发实力和丰富的行业经验,精工电联已经成功地在工控设备、医疗设备、人工智能、新能源领域、轨道交通和超声波设备等…

数学建模【非线性规划】

一、非线性规划简介 通过分析问题判断是用线性规划还是非线性规划 线性规划:模型中所有的变量都是一次方非线性规划:模型中至少一个变量是非线性 非线性规划在形式上与线性规划非常类似,但在数学上求解却困难很多 线性规划有通用的求解准…

实战 | 使用CNN和OpenCV实现数字识别项目(步骤 + 源码)

导 读 本文主要介绍使用CNN和OpenCV实现数字识别项目,含详细步骤和源码。 前 言 在当今世界,深度学习和图像处理技术正在各个应用领域得到利用。在这篇博文中,我们将使用卷积神经网络 (CNN) 和 OpenCV 库完成数字识别项目。我们将逐步掌握该项目如何执行。 项目准…

Git 初学

目录 一、需求的产生 二、版本控制系统理解 1. 认识版本控制系统 2. 版本控制系统分类 (1)集中式版本控制系统 缺点: (2)分布式版本控制系统 三、初识 git 四、git 的使用 例:将 “ OLED文件夹 ”…