用于图像处理的Python顶级库 !!

文章目录

前言

1、OpenCV

2、Scikit-Image

3、Scipy

4、Python Image Library(Pillow / PIL)

5、Matplotlib

6、SimpleITK

7、Numpy

8、Mahotas


前言

正如IDC所指出的,数字信息将飙升至175ZB,而这些信息中的巨大一部分是图片。数据科学家需要(预先)测量这些图像,然后再将它们放入人工智能和深度学习模型中。在愉快的部分开始之前,他们需要做重要的工作。

为了快速地处理大量信息,科学家需要利用图像准备工具来完成人工智能和深度学习任务。

在本文中,将深入研究Python中最有用的图像处理库,这些库正在人工智能和深度学习任务中得到大力利用。


1、OpenCV

OpenCV是最著名和应用最广泛的开源库之一,用于图像处理、目标检测、图像分割、人脸识别等计算机视觉任务。除此之外,它还可以用于机器学习任务。

这是英特尔在2022年开发的。它是用C++编写的,但是开发人员已经提供了Python和java绑定。它易于阅读和使用。

为了建立计算机视觉和机器学习模型,OpenCV有超过2500种算法。这些算法对于执行各种任务非常有用,例如人脸识别、目标检测等。让我们看一些可以使用OpenCV执行的示例:

(1)灰度缩放

灰度缩放是一种将3通道图像(如RGB、HSV等)转换为单通道图像(即灰度)的方法。最终的图像在全白和全黑之间变化。灰度缩放的重要性包括降维(将3通道图像转换为单通道图像)、降低模型复杂度等。

下面的代码片段展示了OpenCV中的灰度缩放:

import cv2 as cv
img = cv.imread('example.jpg')
cv.imshow('Original', img)
cv.waitKey()
#Use cvtColor, to convert to grayscale
gray_img = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
cv.imshow('Grayscale', gray_img)
cv.waitKey(0)

(2)旋转图像

OpenCV有助于使用从0到360度的任意角度旋转图像。

检查以下代码将图像旋转180度:

import matplotlib.pyplot as plt
img = cv.imread('example.jpg')
h, w = image.shape[:2]
rot_matrix = cv.getRotationMatrix2D((w/2,h/2), -180, 0.5)
rot_image = cv.warpAffine(img, rot_matrix, (w, h))
plt.imshow(cv.cvtColor(rot_image, cv.COLOR_BGR2RGB))

OpenCV还提供了除我们到目前为止讨论的功能之外的其他功能。除此之外,它还有助于人脸检测、图像分割、特征提取、目标检测和三维重建等。

有关更多信息,请查看官方文档:https://opencv.org/

2、Scikit-Image

Scikit-Image 是另一个伟大的开源图像处理库。它几乎适用于任何计算机视觉任务。它是最简单、最直接的库之一。这个库的某些部分是有Cython编写的(它是Python编程语言的超集,旨在使python比C语言要快)。

它提供了大量的算法,包括分割、颜色空间操作、几何变换、滤波、形态学、特征检测等。

Scikit-Image使用Numpy数组作为图像对象。让我们看看如何在scikit图像中执行活动轮廓操作。活动轮廓描述图像中形状的边界。

查看以下活动轮廓操作代码:

import numpy as np
import matplotlib.pyplot as plt
from skimage.color import rgb2gray
from skimage import data
from skimage.filters import gaussian
from skimage.segmentation import active_contour
image = data.astronaut()
# Data for circular boundary
s = np.linspace(0, 2*np.pi, 400)
x = 220 + 100*np.cos(s)
y = 100 + 100*np.sin(s)
init = np.array([x, y]).T
# formation of the active contour
centre = active_contour(gaussian(image, 3),init, alpha=0.015, beta=10, gamma=0.001)
figure, axis = plt.subplots(1, 2, figsize=(7, 7))
ax[0].imshow(image, cmap=plt.cm.gray)
ax[0].set_title("Original Image")
ax[1].imshow(image, cmap=plt.cm.gray)

有关更多信息,请查看官方文档:https://scikit-image.org/docs/stable/auto_examples/

3、Scipy

Scipy 主要用于数据和科学计算,但有时也可以使用子模块Scipy.ndimage用于基本的图像操作和处理任务。

归根结底,图像只是多维数组,Scipy提供了一组用于操作n维Numpy操作的函数。Scipy提供了一些基本的图像处理操作,如人脸检测、卷积、图像分割、读取图像、特征提取等。

除此之外,还可以执行过滤,在图像上绘制轮廓线。

请查看以下代码使用Scipy模糊图像:

from scipy import ndimage, misc
from matplotlib import pyplot as plt
f = misc.face()
b_face = ndimage.gaussian_filter(f, sigma=3)
figure, axis = plt.subplots(1, 2, figsize=(16, 8))

有关更多信息,请查看官方文档:https://docs.scipy.org/doc/scipy/reference/ndimage.html

4、Python Image Library(Pillow / PIL)

它是一个用于图像处理任务的开放源码python库。它提供了其他库通常不提供的特殊功能,如过滤、打开操作和保存图像。这个库支持多种文件格式,这使它更高效。PIL还支持图像处理、图像显示和图像存档等功能。让我们看看使用Pillow / PIL的图像增强。

更改图像的清晰度:

有关更多信息,请查看官方文档:https://pillow.readthedocs.io/en/stable/index.html

5、Matplotlib

Matplotlib 主要用于二维可视化,如散点图、条形图、直方图等,但我们也可以将其用于图像处理。从图像中提取信息是有效的。它不支持所有的文件格式。

背景颜色更改操作后,请查看以下图像:

有关更多信息,请查看官方文档:https://matplotlib.org/stable/tutorials/introductory/images.html

6、SimpleITK

它也称为图像分割和注册工具包。它是一个用于图像注册和图像分割的开源库。像OpenCV这样的库将图像视为一个数组,但是这个库将图像视为空间中某个区域上的一组点。

有关更多信息,请查看官方文档:https://itk.org/

7、Numpy

它是一个用于数值分析的开放源码python库。它包含一个矩阵和多维数组作为数据结构。但是NumPy也可以用于图像处理任务,例如图像裁剪、操作像素和像素值的蒙版。

检查下图以从图像中提取绿色/红色/蓝色通道:

有关更多信息,请查看官方文档:http://:https://scikit-image.org/docs/dev/user_guide/numpy_images.html

8、Mahotas

它是另一个用于计算机视觉和图像处理的开放源码python库。它是为生物信息学而设计的。它提供了很多算法,这些算法是用C++编写的,速度很快,使用了一个好的Python接口。它以NumPy数组读取和写入图像。

使用Mahotas检查下面的模板匹配图像:

有关更多信息,请查看官方文档:

参考:小白学视觉

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/258876.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2.9日学习打卡----初学RabbitMQ(四)

2.9日学习打卡 目录: 2.9日学习打卡一.RabbitMQ 死信队列创建死信队列测试死信队列 二. RabbitMQ 延迟队列延迟队列_死信队列实现RabbitMQ延迟队列_插件实现 三. RabbitMQ集群搭建RabbitMQ集群镜像队列负载均衡 一.RabbitMQ 死信队列 在MQ中,当消息成为死…

php基础学习之可变函数(web渗透测试关键字绕过rce和回调函数)

可变函数 看可变函数的知识点之前,蒟蒻博主建议你先去看看php的可变变量,会更加方便理解,在本篇博客中的第五块知识点->php基础学习之变量-CSDN博客 描述 当一个变量所保存的值刚好是一个函数的名字(由函数命名规则可知该值必…

【复现】某公司指挥调度管理平台 RCE漏洞_51

目录 一.概述 二 .漏洞影响 三.漏洞复现 1. 漏洞一: 四.修复建议: 五. 搜索语法: 六.免责声明 一.概述 该平台提供强大的指挥调度功能,可以实时监控和管理通信网络设备、维护人员和工作任务等。用户可以通过该平台发送指令…

AD9361多片同步设计方法

本文基于ZC706FMCOMMS5的平台,介绍了多片AD9361同步的方法。并将该设计移植到自行设计的ZYNQ70354片AD9361(实现8路同步收发)的电路板上。 工程主要特点包括: 本设计采用纯逻辑的方式 1.4片AD9361组合,组成8通道发和8通道收 2.同步相位误差小…

[HTML]Web前端开发技术26(HTML5、CSS3、JavaScript )JavaScript基础——喵喵画网页

希望你开心,希望你健康,希望你幸福,希望你点赞! 最后的最后,关注喵,关注喵,关注喵,佬佬会看到更多有趣的博客哦!!! 喵喵喵,你对我真的…

PLC-Recorder的延伸分析功能说明

目录 一、缘起 二、如何从PLC-Recorder获取数据 1、在线获取 2、全自主打开数据文件 3、延伸分析 三、设置方法 四、效果展示 一、缘起 在各个行业,在不同的场景中,朋友们拿到数据后,想做的事情五花八门,有做宏观分析的、…

wps使用方法(包括:插入倒三角符号,字母上面加横线,将word中的所有英文设置为time new roman)

倒三角符号 字母上面加横线 将word中的所有英文设置为time new roman ctrla选中全文

Java基于微信小程序的医院挂号小程序,附源码

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…

作业帮 x TiDB丨多元化海量数据业务的支撑

导读 作业帮是一家成立于 2015 年的在线教育品牌,致力于用科技手段助力教育普惠。经过近十年的积累,作业帮运用人工智能、大数据等技术,为学生、老师、家长提供学习、教育解决方案,智能硬件产品等。随着公司产品和业务场景越来越…

CSS概述 | CSS的引入方式 | 选择器

文章目录 1.CSS概述2.CSS的引入方式2.1.内部样式表2.2.行内样式表2.3.外部样式表 3.选择器 1.CSS概述 CSS,全称Cascading Style Sheets(层叠样式表),是一种用来设置HTML(或XML等)文档样式的语言。CSS的主要…

AI专题:5G-A扬帆风正劲,踏AI增长新浪潮

今天分享的是AI系列深度研究报告:《AI专题:5G-A扬帆风正劲,踏AI增长新浪潮》。 (报告出品方:开源证券) 报告共计:22页 足立连接,拓展算力,双曲线稳步发力 中兴通讯拥…

Rocky Linux 下载安装

一、VMware Workstation下载安装 1、安装教程 VMware Workstation下载安装(含密钥) 二、VMware Workstation 创建虚拟机 1、创建教程 VMware Workstation 创建虚拟机 三、Rocky Linux 下载 1、下载官网 RockyLinux.org 2、选择X86架构_64位系统_DVD镜…

Redis面试题整理(持续更新)

1. 缓存穿透? 缓存穿透是指查询一个一定不存在的数据,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到 DB 去查询,可能导致DB挂掉,这种情况大概率是遭到了攻击。 解决方案: …

【开源】SpringBoot框架开发创意工坊双创管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 管理员端2.2 Web 端2.3 移动端 三、系统展示四、核心代码4.1 查询项目4.2 移动端新增团队4.3 查询讲座4.4 讲座收藏4.5 小程序登录 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpringBootMySQL的创意工坊双创管理…

TiDB in 2023, 一次简单的回顾丨PingCAP 唐刘

2023 年已经过去,TiDB 经过了一年的迭代,又往前进步了一点点,我们非常自豪的看到,TiDB 正在不断地帮助我们的客户成功,包括但不限于: ○ 首个云原生、分布式、全栈国产化银行核心业务系统投产上线丨TiDB …

Apache POI | Java操作Excel文件

目录 1、介绍 2、代码示例 2.1、将数据写入Excel文件 2.2、读取Excel文件中的数据 🍃作者介绍:双非本科大三网络工程专业在读,阿里云专家博主,专注于Java领域学习,擅长web应用开发、数据结构和算法,初步…

【开源图床】使用Typora+PicGo+Github+CDN搭建个人博客图床

准备工作: 首先电脑得提前完成安装如下: 1. nodejs环境(node ,npm):【安装指南】nodejs下载、安装与配置详细教程 2. Picgo:【安装指南】图床神器之Picgo下载、安装与配置详细教程 3. Typora:【安装指南】markdown神器之Typora下载、安装与无限使用详细教…

LeetCode---384周赛

题目列表 3033. 修改矩阵 3034. 匹配模式数组的子数组数目 I 3035. 回文字符串的最大数量 3036. 匹配模式数组的子数组数目 II 一、修改矩阵 简单模拟即可&#xff0c;代码如下 class Solution { public:vector<vector<int>> modifiedMatrix(vector<vecto…

Stable Diffusion教程——常用插件安装与测试(一)

前言 随着Stable Diffusion不断演进&#xff0c;越来越多的开发者开始涉足插件开发。尽管网络上存在大量教程&#xff0c;但它们通常零散分布&#xff0c;逐个学习和查找非常耗时&#xff0c;使人感觉每天都在劳累思考。这里总结了Stable Diffusion常用的插件安装与测试方法。…

[Angular 基础] - 视图封装 局部引用 父子组件中内容传递

[Angular 基础] - 视图封装 & 局部引用 & 父子组件中内容传递 之前的笔记&#xff1a; [Angular 基础] - Angular 渲染过程 & 组件的创建 [Angular 基础] - 数据绑定(databinding) [Angular 基础] - 指令(directives) 以上为静态页面&#xff0c;即不涉及到跨组…