R cox回归 ggDCA报错

临床预测模型的决策曲线分析(DCA):基于ggDCA包
决策曲线分析法(decision curve analysis,DCA)是一种评估临床预测模型、诊断试验和分子标记物的简单方法。 我们在传统的诊断试验指标如:敏感性,特异性和ROC曲线下面积仅测量预测模型的诊断准确性,未能考虑特定模型的临床效用,而DCA的优势在于它将患者或决策者的偏好整合到分析中。这种理念的提出满足了临床决策的实际需要,在临床分析中的应用日益广泛。

前 言

本文介绍使用ggDCA包绘制多因素Cox回归模型的决策曲线分析(Decision curve analysis,DCA)。

ggDCA是目前能同时绘制Cox回归模型、logistic回归模型及广义线性模型的DCA曲线且其图形能用ggplot2美化。同时,该包还能计算DCA的曲线下面积、净获益及阈值概率的范围,如果把这些加入到文章中相信能增色不少!

1. 预测模型评估小结

2. ggDCA包的安装

3. Cox回归模型的DCA

4. 单个Cox模型多个时间点的DCA

5. 多个Cox回归模型的DCA比较

6. 多个模型在多个时间的DCA比较

7. DCA的曲线下面积(AUDC)

8. 其他回归模型的DCA

一、模型评估与比较小结

举例:某列线图(AUC/C-inde=0.8)预测某患者5年复发风险为70%。

1. 区分度 (Discrimination)

使用ROC曲线的曲线下面积(AUC)和C-index评估。

AUC/C-index=0.8,列线图对此结果的区分能力为80%,即有80%的把握确定复发率为70%。预测模型 | 6. 模型评估:ROC曲线-基于多因素Cox回归

2. 校准度 (Calibration)

使用校准图评估。

校准图用于解释列线图预测的70%复发率与实际复发率的接近程度,即准确性评估。详见:预测模型 | 5. 模型评估:校准曲线

3. 临床实用性

(Clinical usefulness)

使用决策曲线分析(DCA)评估。

多因素Cox回归的DCA曲线

#载入R包
ibrary(rms)
library(ggDCA)
library(survival)  #清理环境
rm(list = ls()) #2.载入数据,status=0为复发
aa<- read.csv('决策分析曲线.CSV')#使用cph()函数时运行
#即报错:adjustment values not defined here or with datadist.....时
bb<-datadist(aa)
options(datadist='bb')
数据点击:https://mp.weixin.qq.com/s/VO3GiBZcL_kAoHrr6_dPAw获取

1、构建多因素Cox回归模型

数据中status,0为感兴趣事件,因此status==0

model1<-coxph(Surv(time,status==0)~AGE+N+ER+LVI+Grade+RT,data=aa)

2、决策曲线分析 DCA

fig1<-dca(model1,new.data = NULL,times=60)
  1. 不写times=60,默认为times="median";
  2. 想看多个时间点DCA,times=c(36,48,60);
  3. 想看外部验证数据DCA曲线,载入外部数据后,new.data = NULLNULL变为外部数据名字。

3、DCA曲线绘制和美化

ggplot(dca1,       model.names="模型1",linetype =F, #线型lwd = 1.2)   #线粗

2.png


4. 美化

library(ggprism)
ggplot(dca1,linetype =F,lwd = 1.2)+#使用直线坐标系    theme_classic()+  #使用prism主题theme_prism(base_size =17)+#图例放在上方theme(legend.position="top")+#x轴范围并加入小刻度scale_x_continuous(limits = c(0, 1),guide = "prism_minor") +#y轴范围并加入小刻度scale_y_continuous(limits = c(-0.01, 0.2),guide = "prism_minor")+#颜色scale_colour_prism(         palette = "candy_bright",name = "Cylinders",label = c("模型1", "ALL", "None"))+#图形标题labs(title = "5年DCA基于ggDCA包")

3.png


更多细节点击查看原文:https://t.1yb.co/nAm1

四、单个模型多个时间点的DCA

只需修改一下times=c(36,48,60)和图例名称即可

#第1步建模同上
#第2步同上,只需改时间即可
dca1<-dca(model1,new.data = NULL,times=c(36,48,60))
#第3步改标签
ggplot(dca1,linetype =F,lwd = 1.2)+theme_classic()+  theme_prism(base_size =15)+theme(legend.position=c(0.7,0.7))+scale_x_continuous(limits = c(0, 1),guide = "prism_minor") +scale_y_continuous(limits = c(-0.01, 0.15),guide = "prism_minor")+scale_colour_prism(palette = "candy_bright",name = "Cylinders",label = c("3年DCA","4年DCA","5年DCA", "ALL-3年", "ALL-4年","ALL-5年","None"))+labs(title = "3-5年DCA")

五、多个模型DCA比较

#再建两个模型
model2 <- coxph(Surv(time,status==0)~AGE+N+ER+PR+Grade,data=aa)
model3 <- coxph(Surv(time,status==0)~AGE+N+ER+LVI,data=aa)
#三模型DCA分析
#只需指明模型名字和时间即可,跟1个模型一样其实
dca2<- dca(model1,model2,model3,times=60)

#绘图,跟单模型一样的代码
ggplot(dca2,linetype =F,lwd = 1.2)+theme_classic()+  theme_prism(base_size =17)+theme(legend.position=c(0.8,0.6))+scale_x_continuous(limits = c(0, 1),guide = "prism_minor") +scale_y_continuous(limits = c(-0.01, 0.15),guide = "prism_minor")+scale_colour_prism(palette = "candy_bright",name = "Cylinders",label = c("模型1", "模型2", "模型3","ALL","None"))+labs(title = "三模型DCA比较")

六、多模型多时间点DCA比较

#只需修改一下时间和标题
dca2<- dca(model1,model2,model3,times=c(36,48,60))ggplot(dca2,linetype =F,lwd = 1.2)+theme_classic()+  theme_prism(base_size =17)+theme(legend.position=c(0.9,0.6))+scale_x_continuous(limits = c(0, 1),guide = "prism_minor") +scale_y_continuous(limits = c(-0.01, 0.15),guide = "prism_minor")+scale_colour_prism(palette = "candy_bright",name = "Cylinders",label = c("模型1", "模型2", "模型3","ALL","None"))+labs(title = "三个模型3-5年DCA比较")

七、曲线下面积及净获益范围

类似ROC曲线的曲线下面积,DCA曲线也有曲线下面积: Area under Decision Curve (AUDC)。

代码非常简单:AUDC(x)x=dca()函数的名称。

净获益范围:rFP.p100(x)

model1<-cph(Surv(time,status==0)~AGE+N+ER+LVI+Grade+RT,data=aa)
dca1<-dca(model1,times=60)
AUDC(dca1)#运行结果
#   model1        All       None 
#0.06035219 0.01139759 0.00000000
rFP.p100(dca1)#也可以直接输入dca1
dca1

基于这个数据框,我们可以比较各个模型在各个时间点的阈值概率范围,最大最小净获益。

在我读过的文章里,这些数据很少被报道。

这项结果也是ggDCA包的一大特色。

这些数据将使我们的文章更具亮点和说服力。

八、其他回归模型的DCA曲线

ggDCA包可以绘制coxph()和cph()Cox回归模型, lrm()逻辑回归模型以及glm()广义线型模型的DCA曲线。

其原理与Cox回归模型一样,建模---dca()分析---绘图

只不过,其他模型不需要加入时间变量。

这里使用逻辑回归模型简单举例

bb<-datadist(aa)
options(datadist='bb')
#建模
m1<- lrm(status~AGE+N+LVI+Grade,data = aa)
m2<- lrm(status~AGE,data = aa)
#dca分析
d<-dca(m1,m2 )
#绘图
ggplot(d)+theme_classic()+  theme_prism(base_size =17)+theme(legend.position=c(0.25,0.3))+scale_x_continuous(limits = c(0.2, 1),guide = "prism_minor") +scale_y_continuous(limits = c(-0.05, 0.8),guide = "prism_minor")+scale_colour_prism(palette = "candy_bright",name = "Cylinders",label = c("lrm模型1", "lrm模型2","ALL","None")

小结

基于ggDCA包的可以为我们绘制各种类型的DCA曲线。在文章中可使用的结果可以有:

1、基于DCA分析,模型1比模型2有着更好的临床实用性,在相同的阈值概率下触发医疗干预时,使用模型1作为指导可以使患者有更多的净获益。----DCA图形看到的 ;

2、此外,模型1比模型2有着更广的阈值概率范围+结果----基于dca(x)结果;

3、不同时间点的模型比较可以看模型的在不同时间其临床实用性的变化情况。

在读过的文章中,常常只汇报了第1条结果,但是,现在我们可以通过ggDCA包挖掘更多的结果以此增加一下文章的亮点了。

ggDCA包参考手册:

https://cran.r-project.org/web/packages/ggDCA/index.html

https://mp.weixin.qq.com/s?__biz=Mzg2MjU2NDQwMg==&mid=100010922&idx=1&sn=eae80cc7ab9e3fd2d66864609520921b&chksm=4e0752f77970dbe170cf969ab9baaf1dbbca8953ff4c2502e54595db5cffec4dc17f76267226#rd

错误1 

Error in model.frame.default(formula = Surv(time, event) ~ data + new_model_by_liang_guo,  :
  参数'data'的种类(list)不对

这个错误来源于

model_Liang_Guo <- coxph(Surv(time, event)~data$new_model_by_liang_guo,data=data)
summary(model_Liang_Guo)

去掉datas$  即可

ggDCA的包报错

由于survival包版本问题,从CRAN安装的ggDCA会报错(如上图)。

因此,要从作者的github上下载ggDCA

ggDCA安装

#1.安装devtools
install.packages("devtools")
#2.从github安装ggDCA
devtools::install_github('yikeshu0611/ggDCA')#注:若是devtools::install_github('yikeshu0611/ggDCA')也报错,可先运行:
options(unzip ='internal')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/263707.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenGL ES (OpenGL) Compute Shader 计算着色器是怎么用的?

OpenGL ES (OpenGL) Compute Shader 是怎么用的? Compute Shader 是 OpenGL ES(以及 OpenGL )中的一种 Shader 程序类型,用于在GPU上执行通用计算任务。与传统的顶点着色器和片段着色器不同,Compute Shader 被设计用于在 GPU 上执行各种通用计算任务,而不是仅仅处理图形…

压缩感知常用的测量矩阵

测量矩阵的基本概念 在压缩感知&#xff08;Compressed Sensing&#xff0c;CS&#xff09;理论中&#xff0c;测量矩阵&#xff08;也称为采样矩阵&#xff09;是实现信号压缩采样的关键工具。它是一个通常为非方阵的矩阵&#xff0c;用于将信号从高维空间映射到低维空间&…

二蛋赠书十六期:《高效使用Redis:一书学透数据存储与高可用集群》

很多人都遇到过这么一道面试题&#xff1a;Redis是单线程还是多线程&#xff1f;这个问题既简单又复杂。说他简单是因为大多数人都知道Redis是单线程&#xff0c;说复杂是因为这个答案其实并不准确。 难道Redis不是单线程&#xff1f;我们启动一个Redis实例&#xff0c;验证一…

深度学习系列59:文字识别

1. 简单文本&#xff1a; 使用google加的tesseract&#xff0c;效果不错。 首先安装tesseract&#xff0c;在mac直接brew install即可。 python调用代码&#xff1a; import pytesseract from PIL import Image img Image.open(1.png) pytesseract.image_to_string(img, lan…

【算法与数据结构】1971、LeetCode寻找图中是否存在路径

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析&#xff1a;本题应用并查集的理论直接就可以解决&#xff1a;【算法与数据结构】回溯算法、贪心算法、动态规划、图…

相机图像质量研究(35)常见问题总结:图像处理对成像的影响--运动噪声

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结&#xff1a;光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结&#xff1a;光学结构对成…

Oracle迁移到mysql-表结构的坑

1.mysql中id自增字段必须是整数类型 id BIGINT AUTO_INCREMENT not null, 2.VARCHAR2改为VARCHAR 3.NUMBER(16)改为decimal(16,0) 4.date改为datetime 5.mysql范围分区必须int格式&#xff0c;不能list类型 ERROR 1697 (HY000): VALUES value for partition …

为什么在MOS管开关电路设计中使用三极管容易烧坏?

MOS管作为一种常用的开关元件&#xff0c;具有低导通电阻、高开关速度和低功耗等优点&#xff0c;因此在许多电子设备中广泛应用。然而&#xff0c;在一些特殊情况下&#xff0c;我们需要在MOS管控制电路中加入三极管来实现一些特殊功能。然而&#xff0c;不同于MOS管&#xff…

redis的缓存穿透,缓存并发,缓存雪崩,缓存问题及解决方案

缓存穿透 问题原因 解决方案 缓存并发 缓存雪崩 缓存失效时间设置一致导致的。 解决方案&#xff1a; 1&#xff09;方案一 2&#xff09;方案二 如何设计一个缓存策略&#xff0c;缓存热点数据&#xff1f;

网卡本质,网络发展(局域网,广域网概念)

目录 引入 网卡的本质 网络的发展 引入 早期 局域网LAN&#xff08;Local Area Network&#xff09; 广域网WAN&#xff08;Wide Area Network&#xff09; 注意 引入 前面我们已经学习了很多关于linux系统的知识,其中文件系统和线程尤为繁杂 而网络其实也算系统的一部…

C/C++暴力/枚举/穷举题目持续更新(刷蓝桥杯基础题的进!)

目录 前言 一、百钱买百鸡 二、百元兑钞 三、门牌号码&#xff08;蓝桥杯真题&#xff09; 四、相乘&#xff08;蓝桥杯真题&#xff09; 五、卡片拼数字&#xff08;蓝桥杯真题&#xff09; 六、货物摆放&#xff08;蓝桥杯真题&#xff09; 七、最短路径&#xff08;蓝…

Day20_网络编程(软件结构,网络编程三要素,UDP网络编程,TCP网络编程)

文章目录 Day20 网络编程学习目标1 软件结构2 网络编程三要素2.1 IP地址和域名1、IP地址2、域名3、InetAddress类 2.2 端口号2.3 网络通信协议1、OSI参考模型和TCP/IP参考模型2、UDP协议3、TCP协议 2.4 Socket编程 3 UDP网络编程3.1 DatagramSocket和DatagramPacket1、Datagram…

【Android安全】Windows 环境下载 AOSP 源码

准备环境 安装 git 安装 Python 硬盘剩余容量最好大于 100G 打开 Git Bash&#xff0c;用 git 克隆源代码仓库 git clone https://android.googlesource.com/platform/manifest.git //没有梯子使用清华源 git clone https://aosp.tuna.tsinghua.edu.cn/platform/manifest.git…

fastApi笔记04-查询参数和字符串校验

额外校验 使用Query可以对查询参数添加校验 from typing import Unionfrom fastapi import FastAPI, Queryapp FastAPI()app.get("/items/") async def read_items(q: Union[str, None] Query(defaultNone, max_length50)):results {"items": [{"…

迅速了解Ascii、GBK、Unicode、UTF-8、BCD各种编码格式的由来及关系!

《嵌入式工程师自我修养/C语言》系列——迅速了解Ascii、GBK、Unicode、UTF-8、BCD各种编码格式的由来及关系 一、Ascii编码二、GBK编码三、Unicode编码四、UTF-8编码五、BCD编码六、其他网友的总结 快速学习嵌入式开发其他基础知识&#xff1f;>>>>>>>&g…

简单mock server模拟用户请求给小程序提供数据

整理小程序代码时发现一此小程序离开了mock-server基本上没有办法显示了,因此用node,express来满足给小程序提供演示数据的功能 const express require(express); const { createCanvas, Image } require(canvas); const fs require(fs); const path require(path);…

解锁苏宁电商数据新纪元:关键字搜索API接口引领业务升级

苏宁关键字搜索API接口&#xff1a;电商数据探索的新篇章 一、引言 在电商领域&#xff0c;数据的重要性不言而喻。为了帮助开发者更高效地获取和利用电商数据&#xff0c;苏宁开放平台提供了关键字搜索API接口。本文将带你深入了解这一接口的技术细节&#xff0c;让你在电商…

消息队列-RabbitMQ:延迟队列、rabbitmq 插件方式实现延迟队列、整合SpringBoot

十六、延迟队列 1、延迟队列概念 延时队列内部是有序的&#xff0c;最重要的特性就体现在它的延时属性上&#xff0c;延时队列中的元素是希望在指定时间到了以后或之前取出和处理&#xff0c;简单来说&#xff0c;延时队列就是用来存放需要在指定时间被处理的元素的队列。 延…

惠尔顿 网络安全审计系统 任意文件读取漏洞复现

0x01 产品简介 惠尔顿网络安全审计产品致力于满足军工四证、军工保密室建设、国家涉密网络建设的审计要求&#xff0c;规范网络行为&#xff0c;满足国家的规范&#xff1b;支持1-3线路的internet接入、1-3对网桥&#xff1b;含强大的上网行为管理、审计、监控模块&#xff1b…

【C++】哈希表底层结构剖析

unordered系列底层结构 unordered系列的关联式容器之所以效率比较高&#xff0c;是因为其底层使用了哈希结构。 哈希概念 顺序结构以及平衡树中&#xff0c;元素关键码与其存储位置之间没有对应的关系&#xff0c;因此在查找一个元素时&#xff0c;必须要经过关键码的多次比…