【C语言】指针详细解读1

1. 内存和地址

1.1 内存

在讲述内存之前,我们先拿生活中的例子类比一下:

假如我们要寻找酒店的一位朋友,首先我得知道以下一些信息:知道他是,知道酒店名,知道酒店房间号就表示我们不能去找其他的东西:桌子、凳子等等,只能是是人。酒店名就表示我们只能在这个酒店去寻找,不能去其他地方寻找。房间号就表示我们去酒店的这个地方就能找到。

我们把上述的例子对照到我们计算机中,就很好理解。

我们知道计算机上CPU(中央处理器)在处理数据的时候,需要的数据是在内存中读取的,处理后的数据也会放回内存中,那我们买电脑的时候,电脑上内存是8GB/16GB/32GB等,那这些内存空间如何⾼效的管理呢?
其实也是把内存划分为⼀个个的内存单元,每个内存单元的⼤⼩取1个字节。

计算机中常⻅的单位(补充):
⼀个⽐特位可以存储⼀个2进制的位1或者0
bit - ⽐特位       //换算单位
byte - 字节        1byte = 8bit
KB                 1KB = 1024byte
MB                 1MB = 1024KB
GB                 1GB = 1024MB
TB                 1TB = 1024GB
PB                 1PB = 1024TB
其中,每个内存单元,相当于⼀个学⽣宿舍,⼀ 个字节空间⾥⾯能放8个⽐特位,就好⽐同学们住
的⼋⼈间,每个⼈是⼀个⽐特位。
每个内存单元也都有⼀个编号(这个编号就相当于宿舍房间的⻔牌号),有了这个内存单元的编号,CPU就可以快速找到⼀个内存空间。
⽣活中我们把⻔牌号也叫地址,在计算机中我们把内存单元的编号也称为地址。C语⾔中给地址起
了新的名字叫:指针。
所以我们可以理解为: 内存单元的编号 == 地址 == 指针

2. 指针变量和地址

2.1 取地址操作符(&)

理解了内存和地址的关系,回到C语⾔,在C语⾔中创建变量其实就是向内存申请空间,⽐如:

⽐如,上述的代码就是创建了整型变量a,内存中申请4个字节,⽤于存放整数10,其中每个字节都有地址,上图中4个字节的地址分别是:
0x00851750
0x00851751
0x00851752
0x00851753
那我们如何能得到a的地址呢?
这⾥就得学习⼀个操作符(&)-取地址操作符
#include <stdio.h>
int main()
{int a = 10;&a;//取出a的地址printf("%p\n", &a);return 0;
}

虽然整型变量占⽤4个字节,我们只要知道了第⼀个字节地址,顺藤摸⽠访问到4个字节的数据也是可⾏的。

2.2 指针变量和解引⽤操作符(*)

2.2.1 指针变量

那我们通过取地址操作符(&)拿到的地址是⼀个数值,⽐如: 0x00851750 ,这个数值有时候也是需要存储起来,⽅便后期再使⽤的,那我们把这样的地址值存放在哪⾥呢?答案是:指针变量中。
⽐如:
#include <stdio.h>
int main()
{int a = 10;int * p = &a;//取出a的地址并存储到指针变量pa中return 0;
}
指针变量也是⼀种变量,这种变量就是⽤来存放地址的,存放在指针变量中的值都会理解为地址。

2.2.2 如何理解指针类型

我们看到p的类型是 int* ,我们该如何理解指针的类型呢?
int a = 10;
int * p = &a;
这⾥p左边写的是 int* * 是在说明p是指针变量,⽽前⾯的 int 是在说明p指向的是整型(int)类型的对象。
我们对照生活中的例子,假如我要寻找的人叫小明,这样就可以得到三个信息:人、房间号、小明。我们对照一下:

如果char类型的变量ch,ch的地址,要放在什么类型的指针变量中呢?

char ch = 'a';
char* p = &ch;

2.2.3 解引用操作符

我们将地址保存起来,如果要使⽤的话,那要怎么使⽤呢?
在现实⽣活中,我们使⽤地址要找到⼀个房间,在房间⾥可以拿去或者存放物品。
C语⾔中其实也是⼀样的,我们只要拿到了地址(指针),就可以通过地址(指针)找到地址(指针)指向的对象,这⾥必须学习⼀个操作符叫解引⽤操作符(*)。
#include <stdio.h>int main()
{int a = 10;int* p = &a;*p = 0;printf("&a = %p\n", p);printf("a  = %d\n", a);return 0;
}

运行结果:

上⾯代码中第6⾏就使⽤了解引⽤操作符, *p  的意思就是通过p中存放的地址,找到指向的空间, *p其实就是a变量了;所以*p = 0,这个操作符是把a改成了0。
有的同学会想,这⾥如果⽬的就是把a改成0的话,写成 a = 0; 不就完了,为啥⾮要使⽤指针呢?
其实这⾥是把a的修改交给了*p来操作,这样对a的修改,就多了⼀种的途径,写代码就会更加灵活, 后期慢慢就能理解了。

2.3 指针变量的大小

如果我们去了解计算机知识,我们可以知道,一台32位机器假设有32根地址总线,每根地址线出来的电信号转换成数字信号后是1或者0,那我们把32根地址线产⽣的2进制序列当做⼀个地址,那么⼀个地址就是32个bit位,需要4个字节才能存储。
如果指针变量是⽤来存放地址的,那么指针变的⼤⼩就得是4个字节的空间才可以。
同理64位机器,假设有64根地址线,⼀个地址就是64个⼆进制位组成的⼆进制序列(也就是64个bit位),存储起来就需要8个字节的空间,指针变量的⼤⼩就是8个字节。

x86(32位)环境输出结果:

x64(64位)环境输出结果:

结论:
• 32位平台下地址是32个bit位,指针变量⼤⼩是4个字节
• 64位平台下地址是64个bit位,指针变量⼤⼩是8个字节
注意:
指针变量的大小和类型是无关的,只要指针类型的变量,在相同的平台下,大小都是相同的。

3. 指针变量类型的意义

指针变量的⼤⼩和类型⽆关,只要是指针变量,在同⼀个平台下,⼤⼩都是⼀样的,为什么还要有各种各样的指针类型呢?
其实指针类型是有特殊意义的,我们接下来继续学习。

3.1 指针的解引用

对⽐,下⾯2段代码,主要在调试时观察内存的变化。
代码1:
//代码1
#include <stdio.h>
int main()
{int n = 0x11223344;int *pi = &n; *pi = 0; return 0;
}

调试结果:

代码2:

//代码2
#include <stdio.h>
int main()
{int n = 0x11223344;char *pc = (char *)&n;*pc = 0;return 0;
}

调试结果:

调试我们可以看到,代码1会将n的4个字节全部改为0,但是代码2只是将n的第⼀个字节改为0。
结论:
指针的类型决定了,对指针解引⽤的时候有多⼤的权限(⼀次能操作⼏个字节)。
⽐如: char* 的指针解引⽤就只能访问⼀个字节,⽽ int* 的指针的解引⽤就能访问四个字节。

3.2 指针+-整数

代码:

#include <stdio.h>
int main()
{int n = 10;char* pc = (char*)&n;int* pi = &n;printf("&n     = %p\n", &n);printf("pc     = %p\n", pc);printf("pc + 1 = %p\n", pc + 1);printf("pi     = %p\n", pi);printf("pi + 1 = %p\n", pi + 1);return 0;
}

运行结果:

我们可以看出, char* 类型的指针变量+1跳过1个字节, int* 类型的指针变量+1跳过了4个字节。
这就是指针变量的类型差异带来的变化。指针+1,其实跳过1个指针指向的元素。指针可以+1,那也可以-1。
结论:指针的类型决定了指针向前或者向后⾛⼀步有多⼤(距离)。

3.3 void* 指针

在指针类型中有⼀种特殊的类型是 void * 类型的,可以理解为⽆具体类型的指针(或者叫泛型指
针),这种类型的指针可以⽤来接受任意类型地址。但是也有局限性, void* 类型的指针不能直接进⾏指针的+-整数和解引⽤的运算。
例子:
#include <stdio.h>int main()
{int a = 10;int* pa = &a;char* pc = &a;return 0;
}
在上⾯的代码中,将⼀个int类型的变量的地址赋值给⼀个char*类型的指针变量。编译器给出了⼀个警告(如下图),是因为类型不兼容。⽽使⽤void*类型就不会有这样的问题。
使⽤void*类型的指针接收地址:
#include <stdio.h>int main()
{int a = 10;int* pa = &a;void* pc = &a;return 0;
}

这⾥我们可以看到, void* 类型的指针可以接收不同类型的地址,但是⽆法直接进⾏指针运算。
那么 void* 类型的指针到底有什么⽤呢?
⼀般 void* 类型的指针是使⽤在函数参数的部分,⽤来接收不同类型数据的地址,这样的设计可以
实现泛型编程的效果,使得⼀个函数来处理多种类型的数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/266990.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙Harmony应用开发—ArkTS声明式开发(通用属性:Flex布局)

说明&#xff1a; 从API Version 7开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 仅当父组件是 Flex、Column、Row 、GridRow时生效。 flexBasis flexBasis(value: number | string) 设置组件的基准尺寸。 卡片能力&#xff1a; 从A…

【MySQL】学习多表查询和笛卡尔积 - 副本

](https://img-blog.csdnimg.cn/21dd41dce63a4f2da07b9d879ad0120b.png#pic_center) ??个人主页: ??热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ??个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-N8PeTKG6uLu4bJuM {font-family:“trebuchet ms”,…

手写数字识别(慕课MOOC人工智能之模式识别)

问题&#xff1a;手写数字识别 数据集 数据集链接请点击我 代码 %mat2vector.m function [data_] mat2vector(data,num)[row,col,~] size(data);data_zeros(num,row*col);for page 1:numfor rows 1:rowfor cols1:coldata_(page,((rows-1)*colcols)) im2double(data(rows,cols…

移动互联网时代的APP上架流程和要点

摘要 本文将介绍移动应用程序上架的基本流程和要点&#xff0c;包括应用商店注册、APP材料准备、打包上传App、APP审核以及发布APP的详细步骤。此外&#xff0c;还会提到利用appuploder工具简化iOS应用上架步骤的方法&#xff0c; 引言 在移动互联网时代&#xff0c;开发一…

【JavaEE】_HttpServletResponse类

目录 1. 核心方法 2. 关于setStatus(400)与sendError 2.1 setStatus(400) 2.2 sendError 3. setHeader方法 4. 构造重定向响应 4.1 使用setHeader和setStatus实现重定向 4.2 使用sendRedirect实现重定向 本专栏已有文章介绍HttpServlet和HttpServletRequest类&#…

加密与安全_探索对称加密算法

文章目录 概述常用的对称加密算法AESECB模式CBC模式 (推荐)ECB VS CBC 附&#xff1a;AES工具类总结 概述 对称加密算法是一种加密技术&#xff0c;使用相同的密钥来进行加密和解密数据。在这种算法中&#xff0c;发送方使用密钥将明文&#xff08;未加密的数据&#xff09;转…

【HDFS】Decommision(退役) EC数据节点剩最后几个块卡住的问题

一、背景 近期操作退役EC集群的节点。在退役的过程中,遇到了一些问题。特此总结一下。 本文描述的问题现象是: 每一批次退役10个节点,完全退役成功后开始操作下一批。 但是,中间有一批次有2台节点的Under Replicated Blocks一直是1,不往下降。 处于Decommissioning状态卡…

使用docker方式测试部署django项目(客户催)

需求 1&#xff1a;已有django项目–weidanyewu 2&#xff1a;希望在服务器上测试部署–客户催 3&#xff1a;没完善django的启动 4&#xff1a;使用临时数据库进行演示 5&#xff1a;使用python3.10版本镜像 6&#xff1a;展示端口80 7&#xff1a;后台执行django程序 8&#…

MATLAB练习题:排队论问题的模拟

​讲解视频&#xff1a;可以在bilibili搜索《MATLAB教程新手入门篇——数学建模清风主讲》。​ MATLAB教程新手入门篇&#xff08;数学建模清风主讲&#xff0c;适合零基础同学观看&#xff09;_哔哩哔哩_bilibili 下面我们来看一道排队论的题目。假设某银行工作时间内只有一个…

【前端素材】推荐优质后台管理系统网页Highdmin平台模板(附源码)

一、需求分析 1、系统定义 后台管理系统是一种用于管理和控制网站、应用程序或系统的管理界面。它通常被设计用来让网站或应用程序的管理员或运营人员管理内容、用户、数据以及其他相关功能。后台管理系统是一种用于管理网站、应用程序或系统的工具&#xff0c;通常由管理员使…

如何搭建自己的图床

前言 简单来说&#xff0c;图床是一种在线服务&#xff0c;允许用户上传、存储和分享图片。当把图片上传到该服务器上后&#xff0c;便能在互联网上通过链接来使用该图片&#xff0c;尤其是在不允许直接上传图片文件的平台上&#xff0c;也有些平台不允许上传其他平台的图片文…

【Web】青少年CTF擂台挑战赛 2024 #Round 1 wp

好家伙&#xff0c;比赛结束了还有一道0解web题是吧( 随缘写点wp(简单过头&#xff0c;看个乐就好) 目录 EasyMD5 PHP的后门 PHP的XXE Easy_SQLi 雏形系统 EasyMD5 进来是个文件上传界面 说是只能上传pdf&#xff0c;那就改Content-Type为application/pdf&#xff0c;改…

【Django】执行查询—跨关系查询中的跨多值关联问题

跨多值查询 跨越 ManyToManyField 或反查 ForeignKey &#xff08;例如从 Blog 到 Entry &#xff09;时&#xff0c;对多个属性进行过滤会产生这样的问题&#xff1a;是否要求每个属性都在同一个相关对象中重合。 filter() 先看filter()&#xff0c;通过一个例子看&#xf…

Java 学习和实践笔记(26):组合(component)的含义以及与继承(extends)的关系

组合的两个作用&#xff1a; 1&#xff09;通过将父类对象作为子类的属性 2&#xff09;通过第1点的作用&#xff0c;实现了代码复用。 示例代码&#xff1a; public class TestComponent {public static void main(String[] args) {Student2 s1 new Student2("jason&…

MySQL 存储过程批量插入总结

功能需求背景&#xff1a;今天接到产品经理核心业务表的数据压测功能&#xff0c;让我向核心业务表插入百万级的业务量数据&#xff0c;我首先想到的办法就是存储过程实现数据的批量 。 由于无法提供核心业务表&#xff0c;本文仅仅提供我刚刚自己创建的表bds_base_user 表做相…

缓存穿透解决方案之布隆过滤器

布隆过滤器可以快速判断数据是否存在&#xff0c;避免从数据库中查询数据是否存在&#xff0c;减轻数据库的压力 布隆过滤器是由一个初值为0的bit数组和N个哈希函数&#xff0c;可以用来快速的判断某个数据是否存在 当我们想要标记某个数据是否存在时&#xff0c;布隆过滤器会…

FPGA之带有进位逻辑的加法运算

module ADDER&#xff08; input [5&#xff1a;0]A&#xff0c; input [5&#xff1a;0]B&#xff0c;output[6&#xff1a;0]Q &#xff09;&#xff1b; assign Q AB&#xff1b; endmodule 综合结果如下图所示&#xff1a; 使用了6个Lut&#xff0c;&#xff0c;6个LUT分布…

2023年全国职业院校技能大赛中职组大数据应用与服务赛项题库参考答案陆续更新中,敬请期待…

2023年全国职业院校技能大赛中职组大数据应用与服务赛项题库参考答案陆续更新中&#xff0c;敬请期待… 武汉唯众智创科技有限公司 2024 年 2 月 联系人&#xff1a;辜渝傧13037102709 题号&#xff1a;试题01 模块三&#xff1a;业务分析与可视化 &#xff08;一&#xff0…

ONLYOFFICE 桌面编辑器 v8.0 更新内容详细攻略

文章目录 引言PDF 表单RTL 支持电子表格中的新增功能Moodle 集成用密码保护 PDF 文件从“开始”菜单快速创建文档本地界面主题下载安装桌面编辑工具总结 引言 官网链接&#xff1a; ONLYOFFICE 官方网址 ONLYOFFICE 桌面编辑器是一款免费的文档处理软件&#xff0c;适用于 Li…

ETL数据仓库的使用方式

一、ETL的过程 在 ETL 过程中&#xff0c;数据从源系统中抽取&#xff08;Extract&#xff09;&#xff0c;经过各种转换&#xff08;Transform&#xff09;操作&#xff0c;最后加载&#xff08;Load&#xff09;到目标数据仓库中。以下是 ETL 数仓流程的基本步骤&#xff1a…