1. 内存和地址
1.1 内存
在讲述内存之前,我们先拿生活中的例子类比一下:
假如我们要寻找酒店的一位朋友,首先我得知道以下一些信息:知道他是人,知道酒店名,知道酒店房间号。人就表示我们不能去找其他的东西:桌子、凳子等等,只能是是人。酒店名就表示我们只能在这个酒店去寻找,不能去其他地方寻找。房间号就表示我们去酒店的这个地方就能找到。
我们把上述的例子对照到我们计算机中,就很好理解。
我们知道计算机上CPU(中央处理器)在处理数据的时候,需要的数据是在内存中读取的,处理后的数据也会放回内存中,那我们买电脑的时候,电脑上内存是8GB/16GB/32GB等,那这些内存空间如何⾼效的管理呢?
其实也是把内存划分为⼀个个的内存单元,每个内存单元的⼤⼩取1个字节。
计算机中常⻅的单位(补充):
⼀个⽐特位可以存储⼀个2进制的位1或者0
bit - ⽐特位 //换算单位
byte - 字节 1byte = 8bit
KB 1KB = 1024byte
MB 1MB = 1024KB
GB 1GB = 1024MB
TB 1TB = 1024GB
PB 1PB = 1024TB
其中,每个内存单元,相当于⼀个学⽣宿舍,⼀ 个字节空间⾥⾯能放8个⽐特位,就好⽐同学们住
的⼋⼈间,每个⼈是⼀个⽐特位。
每个内存单元也都有⼀个编号(这个编号就相当于宿舍房间的⻔牌号),有了这个内存单元的编号,CPU就可以快速找到⼀个内存空间。
⽣活中我们把⻔牌号也叫地址,在计算机中我们把内存单元的编号也称为地址。C语⾔中给地址起
了新的名字叫:指针。
所以我们可以理解为: 内存单元的编号 == 地址 == 指针
2. 指针变量和地址
2.1 取地址操作符(&)
理解了内存和地址的关系,回到C语⾔,在C语⾔中创建变量其实就是向内存申请空间,⽐如:
⽐如,上述的代码就是创建了整型变量a,内存中申请4个字节,⽤于存放整数10,其中每个字节都有地址,上图中4个字节的地址分别是:
0x00851750
0x00851751
0x00851752
0x00851753
那我们如何能得到a的地址呢?
这⾥就得学习⼀个操作符(&)-取地址操作符
#include <stdio.h>
int main()
{int a = 10;&a;//取出a的地址printf("%p\n", &a);return 0;
}
虽然整型变量占⽤4个字节,我们只要知道了第⼀个字节地址,顺藤摸⽠访问到4个字节的数据也是可⾏的。
2.2 指针变量和解引⽤操作符(*)
2.2.1 指针变量
那我们通过取地址操作符(&)拿到的地址是⼀个数值,⽐如: 0x00851750 ,这个数值有时候也是需要存储起来,⽅便后期再使⽤的,那我们把这样的地址值存放在哪⾥呢?答案是:指针变量中。
⽐如:
#include <stdio.h>
int main()
{int a = 10;int * p = &a;//取出a的地址并存储到指针变量pa中return 0;
}
指针变量也是⼀种变量,这种变量就是⽤来存放地址的,存放在指针变量中的值都会理解为地址。
2.2.2 如何理解指针类型
我们看到p的类型是 int* ,我们该如何理解指针的类型呢?
int a = 10;
int * p = &a;
这⾥p左边写的是 int* , * 是在说明p是指针变量,⽽前⾯的 int 是在说明p指向的是整型(int)类型的对象。
我们对照生活中的例子,假如我要寻找的人叫小明,这样就可以得到三个信息:人、房间号、小明。我们对照一下:
如果char类型的变量ch,ch的地址,要放在什么类型的指针变量中呢?
char ch = 'a';
char* p = &ch;
2.2.3 解引用操作符
我们将地址保存起来,如果要使⽤的话,那要怎么使⽤呢?
在现实⽣活中,我们使⽤地址要找到⼀个房间,在房间⾥可以拿去或者存放物品。
C语⾔中其实也是⼀样的,我们只要拿到了地址(指针),就可以通过地址(指针)找到地址(指针)指向的对象,这⾥必须学习⼀个操作符叫解引⽤操作符(*)。
#include <stdio.h>int main()
{int a = 10;int* p = &a;*p = 0;printf("&a = %p\n", p);printf("a = %d\n", a);return 0;
}
运行结果:
上⾯代码中第6⾏就使⽤了解引⽤操作符, *p 的意思就是通过p中存放的地址,找到指向的空间, *p其实就是a变量了;所以*p = 0,这个操作符是把a改成了0。
有的同学会想,这⾥如果⽬的就是把a改成0的话,写成 a = 0; 不就完了,为啥⾮要使⽤指针呢?
其实这⾥是把a的修改交给了*p来操作,这样对a的修改,就多了⼀种的途径,写代码就会更加灵活, 后期慢慢就能理解了。
2.3 指针变量的大小
如果我们去了解计算机知识,我们可以知道,一台32位机器假设有32根地址总线,每根地址线出来的电信号转换成数字信号后是1或者0,那我们把32根地址线产⽣的2进制序列当做⼀个地址,那么⼀个地址就是32个bit位,需要4个字节才能存储。
如果指针变量是⽤来存放地址的,那么指针变的⼤⼩就得是4个字节的空间才可以。
同理64位机器,假设有64根地址线,⼀个地址就是64个⼆进制位组成的⼆进制序列(也就是64个bit位),存储起来就需要8个字节的空间,指针变量的⼤⼩就是8个字节。
x86(32位)环境输出结果:
x64(64位)环境输出结果:
结论:
• 32位平台下地址是32个bit位,指针变量⼤⼩是4个字节
• 64位平台下地址是64个bit位,指针变量⼤⼩是8个字节
注意:
指针变量的大小和类型是无关的,只要指针类型的变量,在相同的平台下,大小都是相同的。
3. 指针变量类型的意义
指针变量的⼤⼩和类型⽆关,只要是指针变量,在同⼀个平台下,⼤⼩都是⼀样的,为什么还要有各种各样的指针类型呢?
其实指针类型是有特殊意义的,我们接下来继续学习。
3.1 指针的解引用
对⽐,下⾯2段代码,主要在调试时观察内存的变化。
代码1:
//代码1
#include <stdio.h>
int main()
{int n = 0x11223344;int *pi = &n; *pi = 0; return 0;
}
调试结果:
代码2:
//代码2
#include <stdio.h>
int main()
{int n = 0x11223344;char *pc = (char *)&n;*pc = 0;return 0;
}
调试结果:
调试我们可以看到,代码1会将n的4个字节全部改为0,但是代码2只是将n的第⼀个字节改为0。
结论:
指针的类型决定了,对指针解引⽤的时候有多⼤的权限(⼀次能操作⼏个字节)。
⽐如: char* 的指针解引⽤就只能访问⼀个字节,⽽ int* 的指针的解引⽤就能访问四个字节。
3.2 指针+-整数
代码:
#include <stdio.h>
int main()
{int n = 10;char* pc = (char*)&n;int* pi = &n;printf("&n = %p\n", &n);printf("pc = %p\n", pc);printf("pc + 1 = %p\n", pc + 1);printf("pi = %p\n", pi);printf("pi + 1 = %p\n", pi + 1);return 0;
}
运行结果:
我们可以看出, char* 类型的指针变量+1跳过1个字节, int* 类型的指针变量+1跳过了4个字节。
这就是指针变量的类型差异带来的变化。指针+1,其实跳过1个指针指向的元素。指针可以+1,那也可以-1。
结论:指针的类型决定了指针向前或者向后⾛⼀步有多⼤(距离)。
3.3 void* 指针
在指针类型中有⼀种特殊的类型是 void * 类型的,可以理解为⽆具体类型的指针(或者叫泛型指
针),这种类型的指针可以⽤来接受任意类型地址。但是也有局限性, void* 类型的指针不能直接进⾏指针的+-整数和解引⽤的运算。
例子:
#include <stdio.h>int main()
{int a = 10;int* pa = &a;char* pc = &a;return 0;
}
在上⾯的代码中,将⼀个int类型的变量的地址赋值给⼀个char*类型的指针变量。编译器给出了⼀个警告(如下图),是因为类型不兼容。⽽使⽤void*类型就不会有这样的问题。
使⽤void*类型的指针接收地址:
#include <stdio.h>int main()
{int a = 10;int* pa = &a;void* pc = &a;return 0;
}
这⾥我们可以看到, void* 类型的指针可以接收不同类型的地址,但是⽆法直接进⾏指针运算。
那么 void* 类型的指针到底有什么⽤呢?
⼀般 void* 类型的指针是使⽤在函数参数的部分,⽤来接收不同类型数据的地址,这样的设计可以
实现泛型编程的效果,使得⼀个函数来处理多种类型的数据。