什么是神经网络?

一、什么是神经网络?

神经网络又称人工神经网络,是一种基于人脑功能模型的计算架构,因此称之为“神经”。神经网络由一组称为“节点”的处理单元组成。这些节点相互传递数据,就像大脑中的神经元相互传递电脉冲一样。

神经网络在机器学习中使用;机器学习是指一种无需明确指令即可学习的计算机程序。具体来说,神经网络在深度学习中使用;深度学习是一种先进的机器学习类型,无需人工干预即可从无标签数据中得出结论。例如,在神经网络基础上建立的深度学习模型在获得足够的训练数据后,就能识别出照片中从未见过的物品。

神经网络使多种类型的人工智能 (AI) 成为可能。大型语言模型 (LLM)(如 ChatGPT)、AI 图像生成器(如 DALL-E)和预测式 AI 模型都在一定程度上依赖于神经网络。

二、神经网络如何工作?

神经网络由一系列节点组成。节点至少分布在三个层上。这三个层分别是:

  • 输入层
  • “隐藏”层
  • 输出层

神经网络至少必须包含这三个层。除了输入层和输出层,神经网络还可以有多个隐藏层。

无论属于哪一层,每个节点都会对从上一层节点(或输入层)接收到的输入执行某种处理任务或功能。基本上,每个节点都包含一个数学公式,公式中每个变量的权重各不相同。如果将该数学公式应用于输入产生的输出超过了某个阈值,该节点就会将数据传递给神经网络的下一层。如果输出低于阈值,则不会将数据传递给下一层。

想象一下,Acme 公司有一个等级森严的会计部。Acme 会计部经理级员工批准低于 1,000 美元的支出,董事批准低于 10,000 美元的支出,首席财务官批准任何超过 10,000 美元的支出。Acme 公司其他部门的员工在提交费用时,首先要提交给会计经理。任何超过 1000 美元的支出都会转给董事,而低于 1000 美元的支出则留在经理一级,以此类推。

Acme 公司会计部的运作方式有点像神经网络。员工提交费用报告就好比是神经网络的输入层。每个经理和总监就好比是神经网络中的一个节点。

就像一位会计经理在将费用报告交给会计主管之前,可能会请另一位经理协助解读报告一样,神经网络也可以用多种方式构建。节点可进行多向通信。

三、有哪些类型的神经网络?

神经网络的节点和层数没有限制,这些节点几乎能够以任何方式进行交互。正因如此,神经网络的类型也在不断增加。不过,它们大致可以分为以下几类:

  • 浅层神经网络通常只有一个隐藏层
  • 深度神经网络有多个隐藏层

与深度神经网络相比,浅层神经网络速度更快,所需的处理能力更低,但无法像深度神经网络那样执行大量复杂任务。

下面是目前可能使用的神经网络类型的不完整列表:

感知器神经网络是一种简单的浅层网络,有一个输入层和一个输出层。

多层感知器神经网络增加了感知器网络的复杂性,并包含一个隐藏层。

前馈神经网络只允许其节点将信息传递给正向节点。

循环神经网络可以倒退,允许某些节点的输出影响之前节点的输入。

模块化神经网络将两个或更多个神经网络组合在一起,以获得输出结果。

径向基函数神经网络节点使用一种称为径向基函数的特殊数学函数。

液体状态机神经网络的特点是节点之间是随机连接的。

残差神经网络通过一个称为身份映射的过程,将早期层的输出与后期层的输出结合起来,从而使数据向前跳转。

四、什么是 Transformer 神经网络?

Transformer 神经网络之所以值得强调,是因为它们在当今广泛使用的 AI 模型中占据了极其重要的位置。

Transformer 模型于 2017 年首次提出,它是一种神经网络,使用一种名为“自注意力机制”的技术来考虑序列中元素的上下文,而不仅仅是元素本身。通过自注意力机制,它们甚至可以检测到数据集各部分之间的微妙联系。

这种能力使它们非常适合分析(举例来说)文本的句子和段落,而不仅仅是单个单词和短语。在 Transformer 模型被开发出来之前,处理文本的 AI 模型在它们处理到句子末尾时,往往会“忘记”了句子的开头,结果是结合的短语和观点对于人类读者来说是没有意义。然而,Transformer 模型能够以更自然的方式处理和生成人类语言。

Transformer 模型是生成式 AI 不可或缺的组成部分,特别是可以根据人类的任意提示生成文本的 LLM。

五、神经网络的历史

神经网络的历史其实很悠久。神经网络的概念可以追溯到 1943 年的一篇数学论文,该论文对大脑的工作方式进行了建模。在 20 世纪 50 年代和 60 年代,计算机科学家开始尝试构建简单的神经网络,但这一概念最终失宠。在 20 世纪 80 年代,这个概念再次兴起,到 20 世纪 90 年代,神经网络在 AI 研究中得到广泛应用。

不过,直到超高速处理能力、海量数据存储能力和计算资源出现后,神经网络才得以发展到今天的地步,能够模仿甚至超越人类的认知能力。这一领域仍在不断发展;目前使用的最重要的神经网络类型之一 Transformer 可以追溯到 2017 年。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/279847.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度学习pytorch——高阶OP(where gather)(持续更新)

where 1、我们为什么需要where? 我们经常需要一个数据来自好几个的取值,而这些取值通常是不规律的,这就会导致使用传统的拆分和合并会非常的麻烦。我们也可以使用for循环嵌套来取值,也是可以的,但是使用for循环就意味…

【数据可视化】使用Python + Gephi,构建中医方剂关系网络图!

代码和示例数据下载 前言 在这篇文章中,我们将会可视化 《七版方剂学》 的药材的关系,我们将使用Python制作节点和边的数据,然后在Gephi中绘制出方剂的网络图。 Gephi是一个专门用于构建网络图的工具,只要你能提供节点和边的数…

攻防实战 | 记一次nacos到接管阿里云百万数据泄露

在某次攻防当中,通过打点发现了一台nacos,经过测试之后发现可以通过弱口令进入到后台,可以查看其中的配置信息 通过翻看配置文件,发现腾讯云的AK,SK泄露,以及数据库的账号密码。操作不就来了么,直接上云&am…

jmeter打开文件报异常无法打开

1、问题现象: 报错部分内容: java.desktop does not export sun.awt.shell to unnamed module 0x78047b92 [in thread "AWT-EventQueue-0"] 报错部分内容: kg.apc.jmeter.reporters.LoadosophiaUploaderGui java.lang.reflect.Invo…

多种智能搜索算法可视化还原 3D 魔方

2024/03/19:程序更新说明(文末程序下载链接已更新) 版本:v1.0 → v1.2 ① 修复:将 CLOSED 表内容从优先级队列中分离开来,原优先级队列作 OPEN 表,并用链表树隐式地代替 CLOSED 表,以…

macOS系统中通过brew安装MongoDB

Macos 修改目录权限: sudo chmod -R 777 你的文件夹 本文使用homebrew进行安装简单,因为从官网下载安装包并手动安装需要移动安装包到合适的目录下并配置环境变量等一大堆操作后才能使用数据库(若没有安装过brew请自行百度进行安装brew&am…

改进YOLOv8注意力系列六:结合SEAttention轻量通道注意力、ShuffleAttention重排特征注意力模块、SimAM无参数化注意力

改进YOLOv8注意力系列五:结合ParNetAttention注意力、高效的金字塔切分注意力模块PSA、跨领域基于多层感知器(MLP)S2Attention注意力 代码SEAttention轻量通道注意力ShuffleAttention重排特征注意力模块SimAM无参数化注意力加入方法各种yaml加入结构本文提供了改进 YOLOv8注…

SQL数据库和事务管理器在工业生产中的应用

本文介绍了关系数据库在工业生产中的应用以及如何使用事务管理器将生产参数下载到PLC,以简化OT/IT融合过程。 一 什么是配方(Recipe) 我们以一家汽车零件制造商的应用举例,该企业专业从事汽车轮毂生产制造。假设该轮毂的型号是“…

短视频矩阵系统技术交付

短视频矩阵系统技术交付,短视频矩阵剪辑矩阵分发系统现在在来开发这个市场单个项目来说,目前基本上已经沉淀3年了,那么我们来就技术短视频矩阵剪辑系统开发来聊聊 短视频矩阵系统经过315大会以后,很多违规的技术开发肯定有筛选到了…

Java开发从入门到精通(九):Java的面向对象OOP:成员变量、成员方法、类变量、类方法、代码块、单例设计模式

Java大数据开发和安全开发 (一)Java的变量和方法1.1 成员变量1.2 成员方法1.3 static关键字1.3.1 static修饰成员变量1.3.1 static修饰成员变量的应用场景1.3.1 static修饰成员方法1.3.1 static修饰成员方法的应用场景1.3.1 static的注意事项1.3.1 static的应用知识…

用Stable Diffusion生成同角色不同pose的人脸

随着技术的不断发展,我们现在可以使用稳定扩散技术(Stable Diffusion)来生成同一角色但不同姿势的人脸图片。本文将介绍这一方法的具体步骤,以及如何通过合理的提示语和模型选择来生成出更加真实和多样化的人脸图像。 博客首发地…

[C语言]一维数组二维数组的大小

对于一维数组我们知道取地址是取首元素的地址,二维数组呢,地址是取第一行的地址,sizeof(数组名)这里计算的就是整个数组的大小,&数组名 表示整个数组,取出的是整个数组的地址,显示的是数组的首元素 记…

javascript:void(0);用法及常见问题解析

文章目录 用法:常见问题解析:示例:用法补充:注意事项:替代方案示例:安全性考虑:替代方案建议:ES6语法替代:性能优化:最佳实践: 在 JavaScript 中&…

【双指针】算法例题

目录 二、双指针 25. 验证回文数 ① 26. 判断子序列 ① 27. 两数之和II - 输入有序数组 ② 28. 盛最多水的容器 ② 29. 三数之和 ② 二、双指针 25. 验证回文数 ① 如果在将所有大写字符转换为小写字符、并移除所有非字母数字字符之后,短语正着读和反着读都一…

【进阶五】Python实现SDVRP(需求拆分)常见求解算法——差分进化算法(DE)

基于python语言,采用经典差分进化算法(DE)对 需求拆分车辆路径规划问题(SDVRP) 进行求解。 目录 往期优质资源1. 适用场景2. 代码调整3. 求解结果4. 代码片段参考 往期优质资源 经过一年多的创作,目前已经成…

Docker简介与安装

简介 用来快速构建、运行、管理应用的工具简单说,帮助我们部署项目以及项目所依赖的各种组件典型的运维工具 安装 1.卸载旧版 首先如果系统中已经存在旧的Docker,则先卸载: yum remove docker \docker-client \docker-client-latest \dock…

解决虚拟机Linux ens33 没有 IP 地址

解决方法: 先进入 root 模式 sudo su 查看目录 ls /etc/sysconfig 找到上述文件夹 ls /etc/sysconfig/network-scripts/ 用 vim 打开 ifcfg-ens33 这个文件(不都是这个名字,按这个方法找到这个文件就行) vim /etc/sysconfig/netw…

农业四情监测设备—全面、准确地收集农田环境数据

型号推荐:云境天合TH-Q3】农业四情监测设备是一种高科技的农田监测工具,旨在实时监测和管理农田中的土壤墒情、作物生长、病虫害以及气象条件。这些设备综合运用了传感器、摄像头、气象站等技术手段,能够全面、准确地收集农田环境数据&#x…

H264字节流编码格式

1.H264码流格式——字节流格式 字节流格式是大多数编码器,默认的输出格式。它的基本数据单位为NAL单元,也即NALU。为了从字节流中提取出NALU,协议规定,在每个NALU的前面加上起始码:0x000001或0x00000001(0…

Nodejs 第五十八章(大文件上传)

在现代网站中,越来越多的个性化图片,视频,去展示,因此我们的网站一般都会支持文件上传。 文件上传的方案 大文件上传:将大文件切分成较小的片段(通常称为分片或块),然后逐个上传这…