【C语言】结构体内存对齐问题

1.结构体内存对齐

我们已经基本掌握了结构体的使用了。那我们现在必须得知道结构体在内存中是如何存储的?内存是如何分配的?所以我们得知道如何计算结构体的大小?这就引出了我们今天所要探讨的内容:结构体内存对齐。

1.1 对齐规则

首先得掌握结构体的对齐规则:
1. 结构体的第⼀个成员对⻬到和结构体变量起始位置偏移量为0的地址处。
2. 其他成员变量要对⻬到某个数字(对⻬数)的整数倍的地址处。
对齐数 = 编译器默认的⼀个对⻬数 与 该成员变量大小的 较⼩值
- VS 中默认对齐数的值为 8
- Linux中 gcc 没有默认对⻬数,对⻬数就是成员⾃⾝的大小
3. 结构体总大小为最⼤对⻬数(结构体中每个成员变量都有⼀个对⻬数,所有对⻬数中最⼤的)的
整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体成员对⻬到⾃⼰的成员中最⼤对⻬数的整数倍处,结构
体的整体⼤⼩就是所有最⼤对⻬数(含嵌套结构体中成员的对⻬数)的整数倍。
范例1:
//范例1
struct S1
{char c1;//1 8 1int i;  //4 8 4char c2;//1 8 1
};int main()
{struct S1 s1 = { 0 };printf("%zd\n", sizeof(s1));return 0;
}

我们画图分析一下:

15aa98d199d8432ab9f0d6c61cdd4f6f.png

我们运行一下结果看看,是不是12个字节:

ad308321e09142eebe4307b078b41f7c.png

确实是12个字节,这就说明,结构体在内存存储中,存在内存对齐的原则。

范例2:

//范例2
struct S2
{char c1;char c2;int i;
};int main()
{struct S2 s2 = { 0 };printf("%zd\n", sizeof(s2));return 0;
}

同样的道理:

f4f48a75f2c14e3ba8d8a82a023c9309.png

运行结果:

3d07f9a5b61d4d03a514ca6385a888f1.png

范例3:

//范例3
struct S3
{double d;//8 8 8char c;  //1 8 1int i;   //4 8 4
};int main()
{struct S3 s3 = { 0 };printf("%zd\n", sizeof(s3));return 0;
}

08e42c74535f427aa4faf99a13703b04.png

运行结果:

7d29cbd2cc934f93bfdefabb731ff858.png

范例4:

//范例4
struct S3
{double d;//8 8 8char c;  //1 8 1int i;   //4 8 4
};struct S4
{char c1;struct S3 s3;double d;
};int main()
{struct S4 s4 = { 0 };printf("%zd\n", sizeof(s4));return 0;
}

65519e877cb049b681f6aee2312cfd28.png

运行结果:

feceb090dd354b35bc2b3479e5262748.png

1.2 为什么存在内存对齐?

⼤部分的参考资料都是这样说的:
1. 平台原因 (移植原因):
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
2.性能原因:
数据结构(尤其是栈)应该尽可能地在⾃然边界上对⻬。原因在于,为了访问未对⻬的内存,处理器需要作两次内存访问;⽽对⻬的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地 址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对⻬成8的倍数,那么就可以⽤⼀个内存操作来读或者写值了。否则,我们可能需要执⾏两次内存访问,因为对象可能被分放在两个8字节内存块中。
总体来说:结构体的内存对⻬是拿空间来换取时间的做法。
那在设计结构体的时候,我们既要满⾜对⻬,⼜要节省空间,如何做到:
让占⽤空间⼩的成员尽量集中在⼀起
 //例如:struct S1{char c1;//1 8 1int i;  //4 8 4char c2;//1 8 1};
//sizeof(struct S1) -> 12个字节struct S2{char c1;//1 8 1char c2;//1 8 1int i;  //4 8 4};
//sizeof(struct S2) -> 8个字节

1.3 修改默认对齐数

#pragma 这个预处理指令,可以改变编译器的默认对齐数。
#include <stdio.h>#pragma pack(1)//设置默认对⻬数为1
struct S
{char c1;int i;char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认
int main()
{//输出的结果是什么?printf("%d\n", sizeof(struct S));return 0;
}
结构体在对齐方式不合适的时候,我们可以自己更改默认对齐数。

运行结果:

ab6eb5410408467199d9cc00b576a0dc.png

2.结构体传参

struct S
{int data[1000];int num;
};
struct S s = {{1,2,3,4}, 1000};
//结构体传参
void print1(struct S s)
{printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{printf("%d\n", ps->num);
}
int main()
{print1(s); //传结构体print2(&s); //传地址return 0;
}
上⾯的 print1 print2 函数哪个好些?
答案是:首选print2函数。
原因:
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递⼀个结构体对象的时候,结构体过⼤,参数压栈的的系统开销⽐较⼤,所以会导致性能的下降。
结论:
结构体传参的时候,要传结构体的地址。

3.结构体实现位段

结构体讲完就得讲讲结构体实现位段的能力。

3.1 什么是位段

位段的声明和结构是类似的,有两个不同:
1. 位段的成员必须是 int、unsigned int 或signed int ,在C99中位段成员的类型也可以
选择其他类型。
2. 位段的成员名后边有⼀个冒号和⼀个数字。
比如:
struct A
{int _a:2;int _b:5;int _c:10;int _d:30;
};
A就是⼀个位段类型。
那位段A所占内存的大小是多少?
printf("%d\n", sizeof(struct A));

3.2 位段的内存分配

1. 位段的成员可以是 intunsigned int signed int 或者是 char 等类型
2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的⽅式来开辟的。
3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使⽤位段。
//⼀个例⼦
#include <stdio.h>
struct S
{char a : 3;char b : 4;char c : 5;char d : 4;
};
int main()
{struct S s = { 0 };s.a = 10;s.b = 12;s.c = 3;s.d = 4;//空间是如何开辟的?return 0;
}

f58e0bf2187f4ef3a513e6fefa651cee.png

3.3 位段的跨平台问题

1. int 位段被当成有符号数还是⽆符号数是不确定的。
2. 位段中最⼤位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会
出问题。
3. 位段中的成员在内存中从左向右分配,还是从右向左分配,标准尚未定义。
4. 当⼀个结构包含两个位段,第⼆个位段成员⽐较大,⽆法容纳于第⼀个位段剩余的位时,是舍弃
剩余的位还是利⽤,这是不确定的。
总结:
跟结构相⽐,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

3.4 位段使用的注意事项

位段的⼏个成员共有同⼀个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位置处是没有地址的。内存中每个字节分配⼀个地址,⼀个字节内部的bit位是没有地址的。
所以不能对位段的成员使⽤&操作符,这样就不能使⽤scanf直接给位段的成员输⼊值,只能是先输⼊放在⼀个变量中,然后赋值给位段的成员。
struct A
{int _a : 2;int _b : 5;int _c : 10;int _d : 30;
};
int main()
{struct A sa = {0};scanf("%d", &sa._b);//这是错误的//正确的⽰范int b = 0;scanf("%d", &b);sa._b = b;return 0;
}

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/280592.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构】——线性表(顺序表加链表),万字解读(加链表oj详解)

前言 由于之前存在过对两者的区别考虑&#xff0c;所以把他们放在一起来说&#xff0c;更加容易区别和理解 对于有关线性表的概念这里就不展示了&#xff0c;这里主要是介绍线性表里面的这两个结构的知识点 一.顺序表 1.顺序表介绍 顺序表的存储结构和逻辑结构都是相邻的&a…

爬虫入门系列-HTML基础语法

&#x1f308;个人主页&#xff1a;会编辑的果子君 &#x1f4ab;个人格言:“成为自己未来的主人~” HTML基础语法 bs4解析比较简单&#xff0c;但是呢&#xff0c;首先你需要了解一丢丢的html知识&#xff0c;然后再去使用bs4去提取&#xff0c;逻辑和编写难度就会非常简…

常用负载均衡详解

一、介绍 在互联网场景下&#xff0c;负载均衡&#xff08;Load Balance&#xff09;是分布式系统架构设计中必须考虑的一个环节&#xff0c;它通常是指将负载流量&#xff08;工作任务、访问请求&#xff09;平衡、分摊到多个操作单元&#xff08;服务器、组件&#xff09;上去…

小程序绕过 sign 签名

之前看到了一篇文章【小程序绕过sign签名思路】之前在做小程序渗透时也遇到了这种情况&#xff0c;但是直接放弃测试了&#xff0c;发现这种思路后&#xff0c;又遇到了这种情况&#xff0c;记录下过程。 并没有漏洞分享&#xff0c;仅仅是把小程序也分享出来&#xff0c;方便…

Redis如何设置键的生存时间或过期时间

键的生存时间或过期时间 概述。 通过EXPIRE命令或者PEXIPIRE命令&#xff0c;客户端可以以秒或者毫秒精度为数据库中的某个键设置生存时间(Time To Live,TTL)&#xff0c;在经过指定的秒数或者毫秒数之后&#xff0c;服务器就会自动删除生存时间为0的键: 127.0.0.1:6379>…

酷开系统用电视为居家生活打开精彩窗口|酷开科技|酷开会员|

随着互联网的发展&#xff0c;电视也承载了更多的功能。相比于传统的电视&#xff0c;如今的智能电视屏幕更大、分辨率更高、色彩更加鲜艳&#xff0c;能够呈现出更加逼真的画面效果。当观众观看大屏电视时&#xff0c;仿佛置身于电影大幕的场景之中&#xff0c;感受到更为震撼…

神经网络(深度学习,计算机视觉,得分函数,损失函数,前向传播,反向传播,激活函数)

目录 一、神经网络简介 二、深度学习要解决的问题 三、深度学习的应用 四、计算机视觉 五、计算机视觉面临的挑战 六、得分函数 七、损失函数 八、前向传播 九、反向传播 十、神经元的个数对结果的影响 十一、正则化与激活函数 一、神经网络简介 神经网络是一种有监督…

EasyExcel模板填充list时按第一行格式合并单元格(含分页线设置)

前言&#xff1a; 在使用easyExcel填充list时&#xff0c;第一行存在合并单元格的情况下&#xff0c;后面使用forceNewRow()填充的行却没有合并样式。 模板&#xff1a; 填充后&#xff1a; 自定义拦截器&#xff1a; 根据官方文档的提示&#xff0c;我们需要自定义拦截器来…

【Redis】Redis常见原理和数据结构

Redis 什么是redis redis是一款基于内存的k-v数据结构的非关系型数据库&#xff0c;读写速度非常快&#xff0c;常用于缓存&#xff0c;消息队列、分布式锁等场景。 redis的数据类型 string&#xff1a;字符串 缓存对象&#xff0c;分布式ID&#xff0c;token&#xff0c;se…

MySQL分组查询与子查询 + MySQL表的联结操作

目录 1 MySQL分组查询与子查询 1.1 数据分组查询 1.2 过滤分组 1.3 分组结果排序 1.4 select语句中子句的执行顺序 1.5 子查询 2 MySQL表的联结操作 2.1 关系表 2.2 表联结 2.3 笛卡尔积 2.4 内部联结 2.5 外联结 2.6 自联结 2.7 组合查询 1 MySQL分组查询与子查询…

树莓派夜视摄像头拍摄红外LED灯

NoIR相机是一种特殊类型的红外摄像头&#xff0c;其名称来源于"No Infrared"的缩写。与普通的彩色摄像头不同&#xff0c;NoIR相机具备红外摄影和低光条件下摄影的能力。 一般摄像头能够感知可见光&#xff0c;并用于普通摄影和视频拍摄。而NoIR相机则在设计上去除了…

基于BusyBox的imx6ull移植sqlite3到ARM板子上

1.官网下载源码 https://www.sqlite.org/download.html 下载源码解压到本地的linux环境下 2.解压并创建install文件夹 3.使用命令行配置 在解压的文件夹下打开终端&#xff0c;然后输入以下内容&#xff0c;其中arm-linux-gnueabihf是自己的交叉编译器【自己替换】 ./config…

【云原生 • Kubernetes】认识 k8s、k8s 架构、核心实战

文章目录 Kubernetes基础概念1. 是什么2. 架构2.1 工作方式2.2 组件架构 3. k8s组件创建集群步骤一 基础环境步骤二 安装kubelet、kubeadm、kubectl步骤三 主节点使用kubeadm引导集群步骤四 副节点加入主节点步骤五 部署dashboard Kubernetes核心实战1. 资源创建方式2. Namespa…

Elasticsearch - Docker安装Elasticsearch8.12.2

前言 最近在学习 ES&#xff0c;所以需要在服务器上装一个单节点的 ES 服务器环境&#xff1a;centos 7.9 安装 下载镜像 目前最新版本是 8.12.2 docker pull docker.elastic.co/elasticsearch/elasticsearch:8.12.2创建配置 新增配置文件 elasticsearch.yml http.host…

EFcore的实体类配置

1 约定配置 约定大于配置&#xff0c;框架默认了许多实体类配置的规则&#xff0c;在约定规则不满足要求时&#xff0c;可以显示地定义规则 1 数据库表明在不指定的情况下&#xff0c;默认使用的是数据库上下文类【DBContext】中DbSet 的属性名&#xff1b; 2 数据库表列的名字…

笔记本8代i5和台式机12代i5的性能比较

一、 台式机12代i5 二、笔记本8代i5 在多核性能上差不多是2.4倍&#xff0c;所以跑大一点的Matlab或者别的程序&#xff0c;用台式机&#xff0c;后边实验室能用上超多核服务器另说。

SpringBoot(整合MyBatis + MyBatis-Plus + MyBatisX插件使用)

文章目录 1.整合MyBatis1.需求分析2.数据库表设计3.数据库环境配置1.新建maven项目2.pom.xml 引入依赖3.application.yml 配置数据源4.Application.java 编写启动类5.测试6.配置类切换druid数据源7.测试数据源是否成功切换 4.Mybatis基础配置1.编写映射表的bean2.MonsterMapper…

JavaScript进阶:js的一些学习笔记-this指向,call,apply,bind,防抖,节流

文章目录 1. this指向1. 箭头函数 this的指向 2. 改变this的指向1. call()2. apply()3. bind() 3. 防抖和节流1. 防抖2. 节流 1. this指向 1. 箭头函数 this的指向 箭头函数默认帮我们绑定外层this的值&#xff0c;所以在箭头函数中this的值和外层的this是一样的箭头函数中的…

springcloud-Eureka注册中心

如果你要理解这个技术博客博客专栏 请先学习以下基本的知识&#xff1a; 什么是微服务什么是服务拆分什么是springcloud Springcloud为微服务开发提供了一个比较泛用和全面的解决框架&#xff0c;springcloud继承了spring一直以来的风格——不重复造轮子&#xff0c;里面很多的…

PyTorch 深度学习(GPT 重译)(六)

十四、端到端结节分析&#xff0c;以及接下来的步骤 本章内容包括 连接分割和分类模型 为新任务微调网络 将直方图和其他指标类型添加到 TensorBoard 从过拟合到泛化 在过去的几章中&#xff0c;我们已经构建了许多对我们的项目至关重要的系统。我们开始加载数据&#xf…