【AI】Ubuntu系统深度学习框架的神经网络图绘制

一、Graphviz

在Ubuntu上安装Graphviz,可以使用命令行工具apt进行安装。

安装Graphviz的步骤相对简单。打开终端,输入以下命令更新软件包列表:`sudo apt update`。之后,使用命令`sudo apt install graphviz`来安装Graphviz软件包。为了验证安装是否成功,可以运行`dot -V`命令检查版本信息。若想在conda环境中使用Graphviz,可以使用`conda install graphviz`命令进行安装。

Graphviz的使用包括编写dot脚本、编译生成图像两个主要步骤。

编写dot脚本是使用Graphviz的第一步。可以用任何文本编辑器创建一个.dot文件,例如使用vim编辑器创建一个名为text.dot的文件,并在其中编写图形定义语句。接着,利用Graphviz提供的dot工具将该文件编译成想要的图像格式,如PNG或PDF。编译命令为`dot -Tpng test.dot -o test.png`,其中`-T`选项指定输出格式,`-o`选项指定输出文件名。此外,如果是在Python环境下使用Graphviz,可以通过安装pygraphviz库来与Graphviz进行交互。

总得来说,在Ubuntu系统上安装和使用Graphviz主要是通过命令行安装软件包,然后编写dot脚本并使用dot工具将脚本编译成图像。Graphviz是一个非常灵活的图形可视化工具,支持多种输出格式,并且可以在多种开发环境中使用。

二、PyTorch

PyTorch本身没有内置功能来绘制神经网络架构的图。然而,有一些第三方库可以帮助我们完成这项工作,比如`torchviz`和`hiddenlayer`。下面我将使用`torchviz`库来展示如何绘制一个简单的神经网络。
首先,需要安装`torchviz`库和graphviz。

python -m pip install torchviz

一旦安装完成,可以用以下代码来创建一个简单的神经网络并使用`torchviz`来绘制它的结构图:

import torch
import torch.nn as nn
from torchviz import make_dot# 定义一个简单的神经网络
class SimpleNet(nn.Module):def __init__(self):super(SimpleNet, self).__init__()self.fc1 = nn.Linear(10, 5)self.relu = nn.ReLU()self.fc2 = nn.Linear(5, 2)def forward(self, x):x = self.fc1(x)x = self.relu(x)x = self.fc2(x)return x# 创建网络和一个假的输入
model = SimpleNet()
dummy_input = torch.randn(1, 10)# 使用 model 和 dummy_input 来生成一个图
vis_graph = make_dot(model(dummy_input), params=dict(model.named_parameters()))# 输出图到一个文件或显示它(需要Graphviz的支持)
vis_graph.view()

在这段代码中,首先我们定义了一个简单的神经网络`SimpleNet`,它包含一个输入层(`fc1`)、一个ReLU激活函数(`relu`)和一个输出层(`fc2`)。使用这个网络模型和一个随机生成的输入`dummy_input`,我们用`make_dot`方法创建了一个可视化图。`make_dot`方法返回的对象可以调用`view`方法来展示图像,或者可以保存它到一个文件中。
请注意,`torchviz`是一个轻量级的工具,它适用于小型到中型的网络可视化。对于复杂的网络,它的显示可能会非常混乱。而且,`torchviz`不会给出太多样式化的选项;它主要是为了呈现计算图的结构,而不是为了创作精细的架构示意图。如果想要更复杂的可视化功能,可能需要探索其他工具,比如`Netron`。

三、Keras

在Keras中,可以使用keras.utils.plot_model函数来绘制神经网络图。这个函数将神经网络的架构可视化为一个图形,其中节点代表层,边表示数据流动的方向。以下是一个使用Keras绘制神经网络图的例子:

首先,确保已经安装了Keras库。

然后,可以创建一个简单的Keras模型并使用plot_model函数来绘制它:

from keras.models import Sequential  
from keras.layers import Dense  
from keras.utils import plot_model  # 创建一个简单的序贯模型  
model = Sequential()  
model.add(Dense(32, activation='relu', input_shape=(10,)))  
model.add(Dense(1, activation='sigmoid'))  # 编译模型  
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])  # 绘制模型图  
plot_model(model, to_file='model_plot.png', show_shapes=True, show_layer_names=True)

在这个例子中,我们创建了一个简单的序贯模型,它包含两个全连接层(Dense层)。plot_model函数被用来生成模型的可视化图,并将其保存为model_plot.png文件。参数show_shapes=True会在图中显示每一层输出的形状,而show_layer_names=True则会显示层的名字。

运行这段代码后,应该会在脚本所在的目录下找到一个名为model_plot.png的图片文件,它展示了神经网络模型的结构。

请注意,plot_model函数依赖于matplotlib和pydot等库来生成图形。如果没有安装这些库,可能需要先安装它们:

python -m pip install matplotlib pydot

此外,由于pydot依赖于Graphviz软件,可能还需要在系统上安装Graphviz。

安装Graphviz的具体步骤取决于操作系统。例如,在Ubuntu上,可以使用以下命令安装:

sudo apt-get install graphviz

安装完这些依赖后,应该就能成功使用plot_model函数来绘制Keras神经网络图了。


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/280745.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mysql笔记:24. 主从同步环境搭建

文章目录 主从同步的基本原理主从同步的搭建步骤1. 环境准备2. 配置主服务器(Master)3. 配置从服务器(Slave)4. 测试配置5. 常见故障5.1. 主从服务器上的MySQL版本不一致导致失败?5.2. Slave_IO_Running状态异常&#…

Mybatis之自定义映射resultMap

学习的最大理由是想摆脱平庸,早一天就多一份人生的精彩;迟一天就多一天平庸的困扰。各位小伙伴,如果您: 想系统/深入学习某技术知识点… 一个人摸索学习很难坚持,想组团高效学习… 想写博客但无从下手,急需…

深度学习之本地部署大模型ChatGLM3-6B【大模型】【报错】

文章目录 0.前言1.模型下载2.配置环境2.1 下载项目文件2.2 配置环境 3.开始推理4.总结 0.前言 本博客将介绍ChatGLM3-6B大模型在Ubuntu上的本地部署教程 1.模型下载 由于毛毛张的服务器服务无法科学上网,所以模型的相关文件必须现在本地下载好,再上传到…

抖店怎么入驻?2024最新入驻流程,新手必看!

我是电商珠珠 最近,很多新手都来问我,入驻抖店的话有没有什么学习资料啊,入驻都需要什么资质啊等等,我也整理了一份,新手入门必备资料,需要的可以来找我拿。 下面我来说说抖店的入驻资质,以及…

C++ —— 内存管理

目录 1. C内存分布 2. C 内存管理方式 2.1 new 和 delete 操作内置类型 2.2 new 和 delete 操作自定义类型 3. operator new与operator delete函数 4. new和delete的实现原理 5. malloc/free 和 new/delete 的区别 1. C内存分布 首先看一段代码: int globalV…

Vue 3响应式系统详解:ref、toRefs、reactive及更多

🌟 前言 欢迎来到我的技术小宇宙!🌌 这里不仅是我记录技术点滴的后花园,也是我分享学习心得和项目经验的乐园。📚 无论你是技术小白还是资深大牛,这里总有一些内容能触动你的好奇心。🔍 &#x…

停车管理系统asp.net+sqlserver

停车管理系统asp.netsqlserver 说明文档 运行前附加数据库.mdf(或sql生成数据库) 主要技术: 基于asp.net架构和sql server数据库, 功能模块: 停车管理系统asp.net sqlserver 用户功能有菜单列表 我的停车记录 专…

赋能数据收集:从机票网站提取特价优惠的JavaScript技巧

背景介绍 在这个信息时代,数据的收集和分析对于旅游行业至关重要。在竞争激烈的市场中,实时获取最新的机票特价信息能够为旅行者和旅游企业带来巨大的优势。 随着机票价格的频繁波动,以及航空公司和旅行网站不断推出的限时特价优惠&#xff…

汽车KL15、KL30、ACC的区别

文章目录 前言一、KL30是什么?二、KL15是什么?KL15信号的演变 三、为啥用KL15、KL30呢? 前言 相信刚接触汽车电子的伙伴都会有一个疑惑,什么是KL15?什么是KL30? 内心一脸懵逼…… KL是德语Klemme的缩写,指的是ECU的…

【Flutter 面试题】Flutter如何进行本地存储和缓存数据?

【Flutter 面试题】Flutter如何进行本地存储和缓存数据? 文章目录 写在前面口述回答补充说明实际案例完整代码示例运行结果详细说明 写在前面 🙋 关于我 ,小雨青年 👉 CSDN博客专家,GitChat专栏作者,阿里云…

两个免费的wordpress主模板

wordpress免费网站主题 蓝色高端大气上档次的wordpress免费网站主题,首页大图wordpress模板。 https://www.wpniu.com/themes/31.html WP免费模板 用粉色高端大气上档次的WP免费模板,建个网站也不错的。 https://www.wpniu.com/themes/16.html

npm ERR! code ELIFECYCLE 解决办法

npm ERR! code ELIFECYCLE 解决办法 问题分析可能原因解决方法 问题 使用Vue脚手架构建项目的时候出现npm ERR! code ELIFECYCLE 分析可能原因 vue-cli-service 并没有加入到环境变量里 解决方法 ./node_modules/.bin/vue-cli-service serve

Day74:WEB攻防-机制验证篇重定向发送响应状态码跳过步骤验证码回传枚举

目录 验证码突破-回传显示&规律爆破 某目标回显显示 某APP验证码爆破 验证目标-重定向用户&重定向发送 某CMS重定向用户 某CMS重定向发送 验证逻辑-修改响应包&跳过步骤URL 某APP修改响应包 某APP跳过步骤URL 实战SRC验证逻辑挖掘分享案例 短信验证码回…

SpringCloud Alibaba Nacos 服务注册和配置中心

一、前言 接下来是开展一系列的 SpringCloud 的学习之旅,从传统的模块之间调用,一步步的升级为 SpringCloud 模块之间的调用,此篇文章为第十二篇,即介绍 SpringCloud Alibaba Nacos 服务注册和配置中心。 二、Nacos 简介 2.1 为…

HarmonyOS(鸿蒙)应用开发——(一)

目录 1 创建hellopro项目 2 了解ArkTS 3 了解ArkTS的组件 4 组件介绍 4.1 常用基础组件: 4.1.1 Text 4.1.2 Button 4.1.3 TextInput 4.2 容器组件 4.2.1 Column 4.2.2 Row 5 案例——实现一个简易登录页面 5.1 在实现预览效果之前,我们…

MCU技术的创新浪潮与产业变革

MCU技术的创新浪潮与产业变革 一、MCU技术的创新发展 MCU,即微控制器,作为现代电子设备的核心部件,一直在不断地创新与发展。随着科技的进步,MCU的性能得到了极大的提升,功能也越来越丰富。从8位到32位,再…

【SpringMVC】知识汇总

SpringMVC 短暂回来,有时间就会更新博客 文章目录 SpringMVC前言一、第一章 SpingMVC概述二、SpringMVC常用注解1. Controller注解2. RequestMapping注解3. ResponseBody注解4. RequestParam5. EnableWebMvc注解介绍6. RequestBody注解介绍7. RequestBody与RequestP…

echart多折线图堆叠 y轴和实际数据不对应

当使用 ECharts 绘制堆叠折线图时,有时会遇到 y 轴与实际数据不对应的问题。 比如明明值是50,但折线点在y轴的对应点却飙升到了二百多 解决办法: 查看了前端代码发现在echart的图表中有一个‘stack’的属性,尝试把他删除之后y轴的…

探索vLLM:释放超大规模语言模型的力量

背景 vLLM是伯克利大学LMSYS组织开源的大语言模型高速推理框架,旨在极大地提升实时场景下的语言模型服务的吞吐与内存使用效率。vLLM是一个快速且易于使用的库,用于 LLM 推理和服务,可以和HuggingFace 无缝集成。vLLM利用了全新的注意力算法「PagedAttention」,有效地管理注…

分布式游戏服务器

1、概念介绍 分布式游戏服务器是一种专门为在线游戏设计的大型系统架构。这种架构通过将游戏服务器分散部署到多台计算机(节点)上,实现了数据的分散存储和计算任务的并行处理。每个节点都负责处理一部分游戏逻辑和玩家请求,通过高…