利用Python进行数据清洗与预处理:Pandas的高级用法【第147篇—Pandas的高级用法】

👽发现宝藏

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。

利用Python进行数据清洗与预处理:Pandas的高级用法

在数据科学和机器学习领域,数据清洗和预处理是至关重要的步骤。Pandas库作为Python中最受欢迎的数据处理工具之一,提供了强大的功能来处理各种数据格式。本文将介绍Pandas的一些高级用法,帮助你更有效地进行数据清洗和预处理。

1. 数据清洗

数据清洗是指处理缺失值、异常值和重复值等问题,使数据集变得更加干净和可靠。下面是一些Pandas的高级技术,可以用来进行数据清洗:

处理缺失值

import pandas as pd# 创建示例数据
data = {'A': [1, 2, None, 4],'B': [5, None, 7, 8]}
df = pd.DataFrame(data)# 填充缺失值
df.fillna(method='ffill', inplace=True)  # 使用前向填充
print(df)

处理异常值

# 删除异常值
threshold = 3
df = df[(df < threshold).all(axis=1)]
print(df)

处理重复值

# 删除重复值
df.drop_duplicates(inplace=True)
print(df)

2. 数据预处理

数据预处理是为了使数据更适合模型训练,包括特征缩放、特征编码等。下面是一些Pandas的高级技术,可用于数据预处理:

特征缩放

from sklearn.preprocessing import StandardScalerscaler = StandardScaler()
scaled_features = scaler.fit_transform(df[['A', 'B']])
df[['A', 'B']] = scaled_features
print(df)

特征编码

# 使用get_dummies进行独热编码
df = pd.get_dummies(df, columns=['Categorical_Column'])
print(df)

时间序列处理

# 转换日期格式
df['Date'] = pd.to_datetime(df['Date'])
# 提取年份
df['Year'] = df['Date'].dt.year
print(df)

通过这些高级用法,你可以更轻松地进行数据清洗和预处理,为后续的数据分析和建模工作打下良好的基础。记得根据实际情况选择合适的方法,以保证数据质量和模型效果。

3. 多列操作与函数应用

Pandas提供了强大的方法来对多列进行操作,并能够轻松地应用自定义函数。下面是一些相关技术:

多列操作

# 添加新列
df['New_Column'] = df['A'] + df['B']# 对多列进行统计计算
df['Sum'] = df[['A', 'B']].sum(axis=1)
print(df)

函数应用

# 定义自定义函数
def custom_function(x):return x * 2# 应用函数到某一列
df['New_Column'] = df['A'].apply(custom_function)
print(df)

4. 数据合并与拼接

在处理多个数据集时,经常需要将它们合并或拼接起来。Pandas提供了便捷的方法来实现这一点:

数据合并

# 创建两个示例数据集
df1 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],'A': ['A0', 'A1', 'A2', 'A3']})
df2 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],'B': ['B0', 'B1', 'B2', 'B3']})# 合并数据集
merged_df = pd.merge(df1, df2, on='key')
print(merged_df)

数据拼接

# 创建两个示例数据集
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],'B': ['B0', 'B1', 'B2', 'B3']})
df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],'B': ['B4', 'B5', 'B6', 'B7']})# 拼接数据集
concatenated_df = pd.concat([df1, df2])
print(concatenated_df)

通过这些技术,你可以轻松地进行数据合并和拼接,实现更复杂的数据处理任务。

5. 数据分组与聚合

在数据分析中,常常需要对数据进行分组并进行聚合操作。Pandas提供了灵活的功能来实现这些操作:

数据分组

# 创建示例数据集
data = {'Category': ['A', 'B', 'A', 'B', 'A'],'Value': [10, 20, 30, 40, 50]}
df = pd.DataFrame(data)# 按照Category列进行分组
grouped = df.groupby('Category')# 对分组后的数据进行聚合操作
print(grouped.sum())  # 对每个分组求和
print(grouped.mean())  # 对每个分组求平均值

自定义聚合函数

# 定义自定义聚合函数
def custom_agg(x):return max(x) - min(x)# 应用自定义聚合函数
print(grouped['Value'].agg(custom_agg))  # 对每个分组应用自定义聚合函数

6. 数据透视表与交叉表

Pandas还提供了数据透视表和交叉表功能,可以方便地对数据进行汇总和分析:

数据透视表

# 创建示例数据集
data = {'A': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'],'B': ['one', 'one', 'two', 'two', 'one', 'one'],'C': ['small', 'large', 'large', 'small', 'small', 'large'],'D': [1, 2, 2, 3, 3, 4]}
df = pd.DataFrame(data)# 创建数据透视表
pivot_table = pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'], aggfunc=np.sum)
print(pivot_table)

交叉表

# 创建示例数据集
data = {'A': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'],'B': ['one', 'one', 'two', 'two', 'one', 'one'],'C': ['small', 'large', 'large', 'small', 'small', 'large']}
df = pd.DataFrame(data)# 创建交叉表
cross_table = pd.crosstab(df['A'], df['B'])
print(cross_table)

通过这些功能,你可以轻松地对数据进行分组、聚合和分析,从而更深入地理解数据的特征和规律。

7. 缺失值处理的高级技巧

处理数据中的缺失值是数据清洗过程中的关键步骤之一。Pandas提供了一些高级技巧来处理缺失值:

插值填充

# 创建示例数据集
data = {'A': [1, 2, np.nan, 4],'B': [5, np.nan, 7, 8]}
df = pd.DataFrame(data)# 使用插值填充缺失值
df.interpolate(inplace=True)
print(df)

使用模型填充

from sklearn.impute import KNNImputer# 创建示例数据集
data = {'A': [1, 2, np.nan, 4],'B': [5, np.nan, 7, 8]}
df = pd.DataFrame(data)# 使用KNN模型填充缺失值
imputer = KNNImputer(n_neighbors=2)
df_filled = pd.DataFrame(imputer.fit_transform(df), columns=df.columns)
print(df_filled)

8. 文本数据处理

Pandas还提供了处理文本数据的功能,可以进行字符串操作、正则表达式匹配等:

字符串操作

# 创建示例数据集
data = {'Text': ['foo', 'bar', 'baz']}
df = pd.DataFrame(data)# 字符串方法操作
df['Text_Length'] = df['Text'].str.len()  # 计算字符串长度
df['Text_Upper'] = df['Text'].str.upper()  # 将字符串转换为大写
print(df)

正则表达式匹配

# 创建示例数据集
data = {'Text': ['foo123', 'bar456', 'baz789']}
df = pd.DataFrame(data)# 正则表达式匹配
df['Digits'] = df['Text'].str.extract('(\d+)', expand=False)  # 提取数字
print(df)

通过这些技巧,你可以更加灵活地处理文本数据,挖掘其中的信息。

9. 数据可视化

除了数据处理外,Pandas还提供了数据可视化的功能,可以帮助你更直观地理解数据:

绘制折线图

# 创建示例数据集
data = {'Date': pd.date_range(start='2022-01-01', periods=10),'Value': np.random.randn(10)}
df = pd.DataFrame(data)# 绘制折线图
df.plot(x='Date', y='Value', title='Time Series Data', xlabel='Date', ylabel='Value')
plt.show()

绘制柱状图

# 创建示例数据集
data = {'Category': ['A', 'B', 'C', 'D'],'Value': [10, 20, 30, 40]}
df = pd.DataFrame(data)# 绘制柱状图
df.plot(kind='bar', x='Category', y='Value', title='Bar Chart', xlabel='Category', ylabel='Value')
plt.show()

绘制箱线图

# 创建示例数据集
data = {'Group': ['A', 'A', 'B', 'B'],'Value': np.random.randn(100)}
df = pd.DataFrame(data)# 绘制箱线图
df.boxplot(by='Group', column='Value')
plt.title('Boxplot by Group')
plt.show()

通过数据可视化,你可以更加直观地观察数据的分布和趋势,为进一步的分析和决策提供依据。

10. 并行处理

对于大规模数据集,Pandas提供了并行处理的功能,可以加速数据处理过程:

# 创建示例数据集
data = {'A': np.random.randn(1000),'B': np.random.randn(1000),'C': np.random.randn(1000)}
df = pd.DataFrame(data)# 并行处理
result = df.apply(lambda x: x**2, axis=1, raw=True)
print(result)

通过设置raw=True参数,可以启用并行处理,提高数据处理的效率。

11. 时间序列处理

Pandas提供了丰富的功能来处理时间序列数据,包括日期索引、时间重采样等:

创建日期索引

# 创建示例时间序列数据
dates = pd.date_range(start='2022-01-01', periods=5, freq='D')
data = {'Values': [1, 2, 3, 4, 5]}
df = pd.DataFrame(data, index=dates)
print(df)

时间重采样

# 按周重采样
weekly_resampled = df.resample('W').mean()
print(weekly_resampled)

移动窗口统计

# 计算滚动平均值
rolling_mean = df['Values'].rolling(window=2).mean()
print(rolling_mean)

时间序列处理能够帮助你更好地分析和预测时间相关的数据,对于金融、气象等领域的数据分析尤为重要。

12. 数据读写

Pandas还提供了丰富的功能来读取和写入各种数据格式:

读取CSV文件

# 读取CSV文件
df = pd.read_csv('data.csv')
print(df)

写入CSV文件

# 写入CSV文件
df.to_csv('output.csv', index=False)

Pandas支持读写多种数据格式,包括CSV、Excel、SQL数据库等,使得数据的导入和导出变得更加便捷。

总结

总的来说,本文介绍了Pandas库的一系列高级用法,涵盖了数据清洗与预处理、多列操作与函数应用、数据合并与拼接、数据分组与聚合、数据透视表与交叉表、缺失值处理的高级技巧、文本数据处理、数据可视化、并行处理、时间序列处理以及数据读写等方面。通过这些高级技巧和功能,读者可以更加灵活地处理和分析各种类型的数据,从而为数据科学和机器学习项目提供更加可靠的数据基础和支持。无论是初学者还是有经验的数据科学家,都可以从本文中获得启发和帮助,进一步提高数据处理和分析的效率。因此,掌握Pandas库的高级用法对于数据领域的从业者来说是非常重要的,希望本文对读者有所启发,激发大家对数据处理和分析的兴趣,欢迎继续深入学习和实践!

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/281599.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】调试器-gdb的使用说明(调试器的配置,指令说明,调试过程说明)

目录 00.背景 01.安装 02.生成调试信息 03.调试过程 00.背景 在软件开发中&#xff0c;通常会为程序构建两种不同的版本&#xff1a;Debug模式和Release模式。它们之间的区别主要在于优化级别、调试信息、错误检查等方面&#xff1a; 1.Debug 模式&#xff1a; 优化级别低…

使用uni-app框架进行移动端的适配(uniapp px转rpx)

1、打开uniapp 官网找到 插件市场介绍2、点击插件市场 px2rpx - DCloud 插件市场3、选择使用HBuilderX导入插件4、在HBuilder中点击右键选择开启px2rpx 5、开启成功后会有提示 6、根据设计搞的尺寸就行&#xff0c;我的是在这750*1620的&#xff0c;正常写px&#xff0c;保存…

[音视频学习笔记]六、自制音视频播放器Part1 -新版本ffmpeg,Qt +VS2022,都什么年代了还在写传统播放器?

前言 参考了雷神的自制播放器项目&#xff0c;100行代码实现最简单的基于FFMPEGSDL的视频播放器&#xff08;SDL1.x&#xff09; 不过老版本的代码参考意义不大了&#xff0c;我现在准备使用Qt VS2022 FFmpeg59重写这部分代码&#xff0c;具体的代码仓库如下&#xff1a; …

ubuntu20.04搭建nginx rtmp视频服务到指定位置解决权限不足

1.安装依赖 apt-get install build-essential libpcre3 libpcre3-dev libssl-dev2.建一个目录 mldir rtmp_nginx 3.源码下载 wget http://nginx.org/download/nginx-1.21.6.tar.gz wget https://github.com/arut/nginx-rtmp-module/archive/master.zip4.解压缩 tar -xf ng…

https 协议

什么是 Https 协议 HTTPS 也是⼀个应⽤层协议. 是在 HTTP 协议的基础上引⼊了⼀个加密层。HTTP 协议内容都是按照⽂本的⽅式明⽂传输的. 这就导致在传输过程中出现⼀些被篡改的情况。HTTPS 通过使用协议加密通信&#xff0c;可以保护数据在传输过程中的安全性&#xff0c;防止…

前端vue2如何处理Rss订阅、聚合,前端 vue2 如何处理xml 格式的数据

文章目录 前言解决 前言 最近看见csdn有Rss订阅这个功能&#xff0c;但发现这个接口响应的数据格式不是常用的Json格式而是xml&#xff0c;即下图的格式。 附响应的代码 <?xml version"1.0" encoding"utf-8" ?><rss version"2.0"&g…

微软开源Garnet高性能缓存服务安装

Garnet介绍 Garnet是一款微软研究院基于C#开发而开源的高性能缓存服务&#xff0c;支持Windows、Linux多平台部署&#xff0c;Garnet兼容Redis服务API&#xff0c;在性能和使用架构上较Redis有很大提升&#xff08;官方说法&#xff09;&#xff0c;并提供与Redis一样的命令操…

UE5的渲染-太难了

大家可以看到&#xff0c;这些都是UE的渲染&#xff0c;非常漂亮惊叹&#xff0c;渲染已经非常成熟&#xff0c;这些画面并不是离线渲染&#xff0c;而是实时渲染。早先年我们渲染CG动画都采用离线渲染&#xff0c;要用到庞大的渲染农场&#xff0c;每渲染一帧都可能需要半个小…

WebGIS航线编辑器(无人机航线规划)

无人机航点、航线规划&#xff0c;实现全自动航点飞行作业及飞行航拍。禁飞区、作业区功能保障飞行安全。 GIS引擎加载 const viewer new Cesium.Viewer("cesiumContainer", { imageryProvider: new Cesium.IonImageryProvider({ assetId: 3872 }), }); const im…

【Django实战一】创建新项目

一、新建Project django-admin startproject 项目名称二、创建应用 1、创建应用 python manage.py startapp 应用名称应用创建后&#xff0c;项目的根目录下会生成对应应用名称的文件夹 2、注册应用 新创建的应用需要在settings.py中的INSTALLED_APPS中注册该应用 INSTALL…

应急救援装备无人机是否必要?无人机在应急救援中的具体应用案例有哪些?

无人机&#xff08;Drone&#xff09;是一种能够飞行并自主控制或远程操控的无人驾驶飞行器。它们通常由航空器、控制系统、通讯链路和电源系统组成&#xff0c;并可以根据任务需求搭载不同类型的传感器、摄像头、货物投放装置等设备。 无人机的种类繁多&#xff0c;从大小、形…

基于python+vue的幼儿园管理系统flask-django-php-nodejs

随着信息时代的来临&#xff0c;过去的传统管理方式缺点逐渐暴露&#xff0c;对过去的传统管理方式的缺点进行分析&#xff0c;采取计算机方式构建幼儿园管理系统。本文通过课题背景、课题目的及意义相关技术&#xff0c;提出了一种活动信息、课程信息、菜谱信息、通知公告、家…

Docker专题-04 Nginx部署

Docker专题-04 Nginx部署 注&#xff1a; 本教程由羞涩梦整理同步发布&#xff0c;本人技术分享站点&#xff1a;blog.hukanfa.com 转发本文请备注原文链接&#xff0c;本文内容整理日期&#xff1a;2024-03-21 csdn 博客名称&#xff1a;五维空间-影子&#xff0c;欢迎关注…

本地化语音识别、视频翻译和配音工具:赋能音频和视频内容处理

随着人工智能技术的飞速发展&#xff0c;语音识别、视频翻译和配音等任务已经变得更加容易和高效。然而&#xff0c;许多现有的工具和服务仍然依赖于互联网连接&#xff0c;这可能会导致延迟、隐私问题和成本问题。为了克服这些限制&#xff0c;我们介绍了一种本地化、离线运行…

MATLAB环境下基于健康指标(Health indicator)的齿轮故障诊断

基于数据驱动的健康指标HI根据其构建策略的不同&#xff0c;常被分成两类&#xff0c;即&#xff1a;有量纲的物理指标和无量纲的虚拟指标。 有量纲的物理指标通常是由信号处理技术对收集到的时频域信号进行分析得到&#xff0c;常见的时域指标有均方根值、峰值指标、峰值因子…

docker swarm 集群创建

1&#xff0c;目的&#xff1a; 通过docker swarm 工具将一台或者多台安装了docker的服务器组成一个完整的集群&#xff0c;该集群中的node节点可以通过Leader节点管理。在使用docker stack部署时&#xff0c;可以将容器自动分发到合适的节点上。 2&#xff0c;服务器准备&am…

0基础学习VR全景平台篇第146篇:为什么需要3D元宇宙编辑器?

一.什么是3D元宇宙编辑器&#xff1f; 3D元宇宙编辑器是全新3DVR交互渲染创作工具&#xff0c;集3D建模、虚拟展厅、AI数字人等能力&#xff0c;渲染和虚拟现实技术于一身的生产力工具。 具有跨平台和随时随地编辑等特点&#xff0c;可广泛应用于展会、展厅、博物馆、可视化园…

flink join的分类

带窗口的join 下图是固定窗口,同样的还有滑动窗口和会话窗口join DataStream<Integer> orangeStream = ...; DataStream<Integer> greenStream = .

LeetCode每日一题——数组串联

数组串联OJ链接&#xff1a;1929. 数组串联 - 力扣&#xff08;LeetCode&#xff09; 题目&#xff1a; 思路&#xff1a; 题目说 ans 由两个 nums 数组 串联 形成。那么我们就只需要历遍两次nums数组&#xff0c;将它放在我们的ans数组里。 注意&#xff1a; 题目函数对于我…

由浅到深认识Java语言(9):Eclipse IDE简介

该文章Github地址&#xff1a;https://github.com/AntonyCheng/java-notes 在此介绍一下作者开源的SpringBoot项目初始化模板&#xff08;Github仓库地址&#xff1a;https://github.com/AntonyCheng/spring-boot-init-template & CSDN文章地址&#xff1a;https://blog.c…