如何使用 Elasticsearch 作为向量数据库

在今天的文章中,我们将很快地通过 Docker 来快速地设置 Elasticsearch 及 Kibana,并设置 Elasticsearch 为向量搜索。

拉取 Docker 镜像

docker pull docker.elastic.co/elasticsearch/elasticsearch:8.12.2
docker pull docker.elastic.co/kibana/kibana:8.12.2

启动 Elasticsearch 及 Kibana 容器

docker network create elasticdocker run -d --name elasticsearch --net elastic -p 9200:9200 -p 9300:9300 -m 1GB -e "discovery.type=single-node" -e "ELASTIC_PASSWORD=password" docker.elastic.co/elasticsearch/elasticsearch:8.12.2docker run -d --name kibana --net elastic -p 5601:5601 docker.elastic.co/kibana/kibana:8.12.2
$ docker run -d --name elasticsearch --net elastic -p 9200:9200 -p 9300:9300 -m 1GB -e "discovery.type=single-node" -e "ELASTIC_PASSWORD=password" docker.elastic.co/elasticsearch/elasticsearch:8.12.2
39dc9085f239edb3c963de4fb122f0ec02f78a6311abd8297cf046c025cd2618
$ docker run -d --name kibana --net elastic -p 5601:5601 docker.elastic.co/kibana/kibana:8.12.2
2766a300b3fd165f793f5f47b55748b2e9d4b016ea78b5c23565442e2c4cdfb5

在上面,我们指定了 elasic 超级用户的密码为 password。这在下面将要使用到。

验证容器是否已启动并正在运行:

$ docker ps
CONTAINER ID   IMAGE                                                  COMMAND                  CREATED              STATUS              PORTS                                            NAMES
2766a300b3fd   docker.elastic.co/kibana/kibana:8.12.2                 "/bin/tini -- /usr/l…"   About a minute ago   Up About a minute   0.0.0.0:5601->5601/tcp                           kibana
39dc9085f239   docker.elastic.co/elasticsearch/elasticsearch:8.12.2   "/bin/tini -- /usr/l…"   3 minutes ago        Up 3 minutes        0.0.0.0:9200->9200/tcp, 0.0.0.0:9300->9300/tcp   elasticsearch

从上面我们可以看到 Elasticsarch 及 Kibana 已经完全运行起来了。我们可以在浏览器中进行验证:

docker exec -it elasticsearch /bin/bash

docker logs -f kibana
$ docker logs -f kibana
Kibana is currently running with legacy OpenSSL providers enabled! For details and instructions on how to disable see https://www.elastic.co/guide/en/kibana/8.12/production.html#openssl-legacy-provider
{"log.level":"info","@timestamp":"2024-03-22T01:28:37.598Z","log.logger":"elastic-apm-node","ecs.version":"8.10.0","agentVersion":"4.2.0","env":{"pid":7,"proctitle":"/usr/share/kibana/bin/../node/bin/node","os":"linux 6.4.16-linuxkit","arch":"arm64","host":"2766a300b3fd","timezone":"UTC+00","runtime":"Node.js v18.18.2"},"config":{"active":{"source":"start","value":true},"breakdownMetrics":{"source":"start","value":false},"captureBody":{"source":"start","value":"off","commonName":"capture_body"},"captureHeaders":{"source":"start","value":false},"centralConfig":{"source":"start","value":false},"contextPropagationOnly":{"source":"start","value":true},"environment":{"source":"start","value":"production"},"globalLabels":{"source":"start","value":[["git_rev","f5bd489c5ff9c676c4f861c42da6ea99ae350832"]],"sourceValue":{"git_rev":"f5bd489c5ff9c676c4f861c42da6ea99ae350832"}},"logLevel":{"source":"default","value":"info","commonName":"log_level"},"metricsInterval":{"source":"start","value":120,"sourceValue":"120s"},"serverUrl":{"source":"start","value":"https://kibana-cloud-apm.apm.us-east-1.aws.found.io/","commonName":"server_url"},"transactionSampleRate":{"source":"start","value":0.1,"commonName":"transaction_sample_rate"},"captureSpanStackTraces":{"source":"start","sourceValue":false},"secretToken":{"source":"start","value":"[REDACTED]","commonName":"secret_token"},"serviceName":{"source":"start","value":"kibana","commonName":"service_name"},"serviceVersion":{"source":"start","value":"8.12.2","commonName":"service_version"}},"activationMethod":"require","message":"Elastic APM Node.js Agent v4.2.0"}
[2024-03-22T01:28:38.276+00:00][INFO ][root] Kibana is starting
[2024-03-22T01:28:38.320+00:00][INFO ][node] Kibana process configured with roles: [background_tasks, ui]
[2024-03-22T01:28:42.183+00:00][INFO ][plugins-service] Plugin "cloudChat" is disabled.
[2024-03-22T01:28:42.192+00:00][INFO ][plugins-service] Plugin "cloudExperiments" is disabled.
[2024-03-22T01:28:42.193+00:00][INFO ][plugins-service] Plugin "cloudFullStory" is disabled.
[2024-03-22T01:28:42.501+00:00][INFO ][plugins-service] Plugin "profilingDataAccess" is disabled.
[2024-03-22T01:28:42.501+00:00][INFO ][plugins-service] Plugin "profiling" is disabled.
[2024-03-22T01:28:42.587+00:00][INFO ][plugins-service] Plugin "securitySolutionServerless" is disabled.
[2024-03-22T01:28:42.587+00:00][INFO ][plugins-service] Plugin "serverless" is disabled.
[2024-03-22T01:28:42.587+00:00][INFO ][plugins-service] Plugin "serverlessObservability" is disabled.
[2024-03-22T01:28:42.587+00:00][INFO ][plugins-service] Plugin "serverlessSearch" is disabled.
[2024-03-22T01:28:42.929+00:00][INFO ][http.server.Preboot] http server running at http://0.0.0.0:5601
[2024-03-22T01:28:42.996+00:00][INFO ][plugins-system.preboot] Setting up [1] plugins: [interactiveSetup]
[2024-03-22T01:28:43.004+00:00][INFO ][preboot] "interactiveSetup" plugin is holding setup: Validating Elasticsearch connection configuration…
[2024-03-22T01:28:43.019+00:00][INFO ][root] Holding setup until preboot stage is completed.i Kibana has not been configured.Go to http://0.0.0.0:5601/?code=897018 to get started.Your verification code is:  897 018 

我们把上面的 enrollment token 及 verification code 填入下面的方框里:

注意:由于一些原因,在上面显示的地址不是 localhost,而是电脑上的另外一个地址,比如 172.18.0.2:9200。这个并不影响我们的配置。

这样我们就成功地登录了。

创建索引

现在,让我们创建 “movies” 索引。 我们将使用 text-embedding-3-small 模型来生成 title 字段的向量嵌入并将其存储为 title_embedding。 该模型生成长度为 1536 的嵌入。因此我们需要将 title_embedding 字段映射指定为具有 1536 维的密集向量。

PUT /movies
{"mappings": {"properties": {"title": {"type": "text"},"genre": {"type": "keyword"},"release_year": {"type": "integer"},"title_embedding": {"type": "dense_vector","dims": 1536}}}
}

让我们使用 Elasticsearch Python 客户端插入一些文档。

Python 客户端需要 `ssl_assert_fingerprint` 才能连接到 Elasticsearch。 让我们使用以下命令来获取它:

openssl s_client -connect localhost:9200 -servername localhost -showcerts </dev/null 2>/dev/null | openssl x509 -fingerprint -sha256 -noout -in /dev/stdin
$ openssl s_client -connect localhost:9200 -servername localhost -showcerts </dev/null 2>/dev/null | openssl x509 -fingerprint -sha256 -noout -in /dev/stdinsha256 Fingerprint=20:67:39:6C:33:C0:D6:AC:E2:E3:A5:2E:56:6C:57:4F:91:DC:41:4D:99:9B:7F:0F:1C:20:AD:E2:20:FE:1E:1B

写入文档到 Elasticsearch

现在我们可以在电影索引中插入一些文档。

我们现在 terminal 中打入如下的命令:

export OPENAI_API_KEY="YourOpenAiKey"

在上面,请填入自己申请的 OpenAI key。

请按照下面的命令来安装所需要的包:

pip3 install elasticsearch python-dotenv

我们创建如下的 python 应用:

write_index.py

from elasticsearch import Elasticsearch
from openai import OpenAI
import osOPENAI_API_KEY= os.getenv("OPENAI_API_KEY")es = Elasticsearch("https://localhost:9200",ssl_assert_fingerprint='20:67:39:6C:33:C0:D6:AC:E2:E3:A5:2E:56:6C:57:4F:91:DC:41:4D:99:9B:7F:0F:1C:20:AD:E2:20:FE:1E:1B',basic_auth=("elastic", "password")
)openai = OpenAI(api_key=OPENAI_API_KEY)movies = [{"title": "Inception", "genre": "Sci-Fi", "release_year": 2010},{"title": "The Shawshank Redemption", "genre": "Drama", "release_year": 1994},{"title": "The Godfather", "genre": "Crime", "release_year": 1972},{"title": "Pulp Fiction", "genre": "Crime", "release_year": 1994},{"title": "Forrest Gump", "genre": "Drama", "release_year": 1994}
]# Indexing movies
for movie in movies:movie['title_embedding'] = openai.embeddings.create(input=[movie['title']], model='text-embedding-3-small').data[0].embeddinges.index(index="movies", document=movie)

我们使用如下的命令来运行脚本:

python3 write_index.py

我们可以在 Kibana 中进行查看:

GET movies/_search

搜索索引

比方说,我们想要搜索与片名《godfather》紧密匹配的电影。 我们可以使用K最近邻(KNN)算法来搜索相关文档。 我们会将搜索限制为仅显示 1 个最接近的匹配结果。

首先我们需要获得单词 Godfather 的向量表示:

vector_value = openai_client.embeddings.create(input=["Godfather"], model='text-embedding-3-small').data[0].embedding

现在我们可以搜索电影索引来获取与片名《Godfather》紧密匹配的电影。 在我们的例子中,它应该与标题为《Godfather》的电影文档匹配。

query_string = {"field": "title_embedding","query_vector": vector_value,"k": 1,"num_candidates": 100
}results = es_client.search(index="movies", knn=query_string, source_includes=["title", "genre", "release_year"])print(results['hits']['hits'])

完整的 Python 应用如下:

search_index.py

from elasticsearch import Elasticsearch
from openai import OpenAI
import osOPENAI_API_KEY= os.getenv("OPENAI_API_KEY")es = Elasticsearch("https://localhost:9200",ssl_assert_fingerprint='20:67:39:6C:33:C0:D6:AC:E2:E3:A5:2E:56:6C:57:4F:91:DC:41:4D:99:9B:7F:0F:1C:20:AD:E2:20:FE:1E:1B',basic_auth=("elastic", "password")
)openai = OpenAI(api_key=OPENAI_API_KEY)vector_value = openai.embeddings.create(input=["Godfather"], model='text-embedding-3-small').data[0].embeddingquery_string = {"field": "title_embedding","query_vector": vector_value,"k": 1,"num_candidates": 100
}results = es.search(index="movies", knn=query_string, source_includes=["title", "genre", "release_year"])print(results['hits']['hits'])

运行上面的代码:

$ python3 search_index.py 
[{'_index': 'movies', '_id': 'koeTZI4BvK48CYytTCuI', '_score': 0.8956262, '_source': {'title': 'The Godfather', 'genre': 'Crime', 'release_year': 1972}}]

很显然,它找到了 Godfather 这个文档。

很多开发者可能想问,我们是不是也可以使用中文来进行搜索呢?

我们尝试如下的代码:

search_index.py

from elasticsearch import Elasticsearch
from openai import OpenAI
import osOPENAI_API_KEY= os.getenv("OPENAI_API_KEY")es = Elasticsearch("https://localhost:9200",ssl_assert_fingerprint='20:67:39:6C:33:C0:D6:AC:E2:E3:A5:2E:56:6C:57:4F:91:DC:41:4D:99:9B:7F:0F:1C:20:AD:E2:20:FE:1E:1B',basic_auth=("elastic", "password")
)openai = OpenAI(api_key=OPENAI_API_KEY)vector_value = openai.embeddings.create(input=["教父"], model='text-embedding-3-small').data[0].embeddingquery_string = {"field": "title_embedding","query_vector": vector_value,"k": 1,"num_candidates": 100
}results = es.search(index="movies", knn=query_string, source_includes=["title", "genre", "release_year"])print(results['hits']['hits'])

在上面的代码中,我们使用 “教父” 而不是 Godfather。运行上面的代码,它显示:

$ python3 search_index.py
[{'_index': 'movies', '_id': 'koeTZI4BvK48CYytTCuI', '_score': 0.6547822, '_source': {'title': 'The Godfather', 'genre': 'Crime', 'release_year': 1972}}]

很显然,它也同样找到 Godfather 这个电影。它说明这个大语言模型支持多语言的搜索。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/283476.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Bug】记录2024年遇到的Bug以及修复方案

--------------------------------------------------------分割线 2024.3.22------------------------------------------------------- 1、load_sample_image raise AttributeError(“Cannot find sample image: %s” % image_name) AttributeError: Cannot find sample ima…

【wubuntu】披着Win11皮肤主题的Ubuntu系统

wubuntu - 一款外观类似于 Windows 的 Linux 操作系统&#xff0c;没有任何硬件限制。以下是官方的描述 Wubuntu is an operating system based on Ubuntu LTS that has a similar appearance to Windows using the open-source themes. Wubuntu also comes with a set of adva…

计算机网络——数据链路层(数据链路层功能概述)

计算机网络——数据链路层&#xff08;数据链路层功能概述&#xff09; 数据链路层的功能数据链路层的基本概念封装成帧和透明传输 我们之前已经学完了物理层的所有内容&#xff0c;今天开始我们要进入数据链路层的学习&#xff0c;如果有小伙伴对物理层的内容感兴趣的话&#…

MySQL数据库:索引

一、索引&#xff1a; 1. 索引的概念&#xff1a; 索引是一个排序的列表&#xff0c;在这个列表中存储着索引的值和包含这个值的数据所在行的物理地址。 使用索引后可以不用扫描全表来定位某行的数据&#xff0c;而是先通过索引表找到该行数据对应的物理地址然后访问相应的数据…

Kubernetes(k8s)集群健康检查常用的五种指标

文章目录 1、节点健康指标2、Pod健康指标3、服务健康指标4、网络健康指标5、存储健康指标 1、节点健康指标 节点状态&#xff1a;检查节点是否处于Ready状态&#xff0c;以及是否存在任何异常状态。 资源利用率&#xff1a;监控节点的CPU、内存、磁盘等资源的使用情况&#xf…

vue 安装脚手架报错 certificate has expired

vue 安装脚手架的时候报错&#xff0c;报错信息如下&#xff1a; 错误信息&#xff1a;npm ERR! request to https://registry.npm.taobao.org/vue%2fcli failed, reason: certificate has expired 翻译&#xff1a;npm ERR&#xff01;请求到https://registry.npm.taobao.org…

上位机图像处理和嵌入式模块部署(qmacvisual图像预处理)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 不管大家是在读书的时候学习的图像处理&#xff0c;还是在后来的工作中&#xff0c;重新学习了图像处理&#xff0c;相信大家对图像预处理的概念并…

【Linux实践室】Linux用户管理实战指南:新建与删除用户操作详解

&#x1f308;个人主页&#xff1a;聆风吟_ &#x1f525;系列专栏&#xff1a;Linux实践室、网络奇遇记 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 一. ⛳️任务描述二. ⛳️相关知识2.1 &#x1f514;Linux创建用户命令2.1.1 知识点讲解2.1.2 案…

1Panel应用推荐:DataEase开源数据可视化分析工具

1Panel&#xff08;github.com/1Panel-dev/1Panel&#xff09;是一款现代化、开源的Linux服务器运维管理面板&#xff0c;它致力于通过开源的方式&#xff0c;帮助用户简化建站与运维管理流程。为了方便广大用户快捷安装部署相关软件应用&#xff0c;1Panel特别开通应用商店&am…

html第一次作业

常用标签 0, 骨架&#xff08;&#xff01;tap&#xff09; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><t…

mysql字段多个值,mybatis/mybatis-plus匹配查询

mysql中有一个字段是字符串类型的&#xff0c;category字段值有多个用逗号分割的&#xff0c;例如&#xff1a;娱乐,时尚美妆,美食 。现在想实现这么一个功能&#xff0c; 前端传参 字符串&#xff0c;美食,娱乐。现在想在mybatis的xml中实现&#xff0c;查询&#xff0c;能查到…

vue3+element Plus form 作为子组件,从父组件如何赋值?

刚开始接触vue3时&#xff0c;碰到一个很low的问题&#xff0c;将form作为子组件&#xff0c;在页面中给form表单项输入内容&#xff0c;输入框不显示值&#xff0c;知道问题出在哪&#xff0c;但因为vue3组合式api不熟悉&#xff0c;不知从哪下手... 效果图&#xff1a; 父组…

华为中心AP 配置入侵防御实验

配置入侵防御示例 组网图形 图1 入侵防御组网图 组网需求配置思路操作步骤中心AP的配置文件 组网需求 如图1所示&#xff0c;某企业部署了WLAN网络&#xff0c;内网用户可以访问Internet的Web服务器。现需要在中心AP上配置入侵防御功能&#xff0c;具体要求如下&#xff1a; 保…

蓝桥杯 2022 省B 李白打酒加强版

这题用递归暴力的方法如下&#xff1a; #include<iostream> #include<bits/stdc.h> using namespace std; int num; int N,M; void dfs(int now,int n,int m) {if(now<0 || n>N ||m>M)return ;if(nN && mM){if(now1)num1;return;}dfs(now-1,n,m1…

InnoDB 缓存

本文主要聊InnoDB内存结构, 先来看下官网Mysql 8.0 InnoDB架构图 MySQL :: MySQL 8.0 Reference Manual :: 17.4 InnoDB Architecture 如上图所示,InnoDB内存主要包含Buffer Pool, Change Buffer, Log Buffer, Adaptive Hash Index Buffer Pool 其实 buffer pool 就是内存中的…

C#,图论与图算法,计算无向连通图中长度为n环的算法与源代码

1 无向连通图中长度为n环 给定一个无向连通图和一个数n,计算图中长度为n的环的总数。长度为n的循环仅表示该循环包含n个顶点和n条边。我们必须统计存在的所有这样的环。 为了解决这个问题,可以有效地使用DFS(深度优先搜索)。使用DFS,我们可以找到特定源(或起点)的长度…

数据库被.[Goodmorningfriends@onionmail.org].faust勒索病毒加密,能恢复吗?

.faust勒索病毒有什么特点及危害&#xff1f; .faust勒索病毒是一种恶意软件&#xff0c;以其复杂的加密技术和勒索行为而闻名。这种病毒的主要目标是通过加密受害者的数据文件&#xff0c;然后勒索赎金以解密这些文件。它通常通过恶意附件、恶意链接或潜在的不安全下载源传播&…

Linux源码包安装

目录 一、transmission源码包安装 二、 nginx源码包安装 一、transmission源码包安装 1、下载编译环境所需的软件包依赖 2、下载transmision源码包到用户主目录下 https://github.com/transmission/transmission/releases/download/4.0.5/transmission-4.0.5.tar.xz 3、解压…

【PyTorch][chapter 22][李宏毅深度学习][ WGAN]【实战三】

前言&#xff1a; 本篇主要讲两个WGAN的两个例子&#xff1a; 1 高斯混合模型 WGAN实现 2 MNIST 手写数字识别 -WGAN 实现 WGAN 训练起来蛮麻烦的,如果要获得好的效果很多超参数需要手动设置 1&#xff1a; 噪声的维度 2: 学习率 3&#xff1a; 生成器&#xff0c;鉴别器…

第六十二回 宋江兵打大名城 关胜议取梁山泊-飞桨ONNX推理部署初探

石秀和卢俊义在城内走投无路&#xff0c;又被抓住。梁中书把他两个人押入死牢。蔡福把他俩关在一处&#xff0c;好酒好菜照顾着&#xff0c;没让两人吃苦。 第二天就接到城外梁山泊的帖子&#xff0c;说大军已经来到&#xff0c;要替天行道&#xff0c;让他放人&#xff0c;并…