yolov5训练并生成rknn模型部署在RK3588开发板上,实现NPU加速推理

简介

RK3588是瑞芯微(Rockchip)公司推出的一款高性能、低功耗的集成电路芯片。它采用了先进的28纳米工艺技术,并配备了八核心的ARM Cortex-A76和Cortex-A55处理器,以及ARM Mali-G76 GPU。该芯片支持多种接口和功能,适用于广泛的应用领域。

本篇为yolov5部署在RK3588的教程。

一、yolov5训练数据

请选择v5.0版本:Releases · ultralytics/yolov5 (github.com)

训练方法请按照官方的READEME文件进行。 

转换前将model/yolo.py的 Detect 类下的

    def forward(self, x):z = []  # inference outputfor i in range(self.nl):if os.getenv('RKNN_model_hack', '0') != '0':z.append(torch.sigmoid(self.m[i](x[i])))continuex[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i]  # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # whelse:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy, wh, conf = y.split((2, 2, self.nc + 1), 4)  # y.tensor_split((2, 4, 5), 4)  # torch 1.8.0xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xywh = (wh * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, conf), 4)z.append(y.view(bs, -1, self.no))if os.getenv('RKNN_model_hack', '0') != '0':return zreturn x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)

修改为:

    def forward(self, x):z = []for i in range(self.nl):x[i] = self.m[i](x[i])return x

但在训练阶段请勿修改。

接着将训练好的best.pt放在工程文件夹下,使用yolov5工程中的export.py将其转换为onnx模型

python export.py --weights best.pt

二、下载RKNN-Toolkit2

1、下面的请在 Ubuntu下进行,创建一个Python环境

conda create -n rknn152 python=3.8

激活环境rknn152

conda activate rknn152

拉取rockchip-linux/rknn-toolkit2 at v1.5.2 (github.com)仓库。我是直接下载的1.5.2版本的zip包。

git clone git@github.com:rockchip-linux/rknn-toolkit2.git

2、安装依赖(requirements_cp38-1.5.2.txt,在rknn-toolkit2/doc目录下)

pip install -r /home/yuzhou/rknn15/rknn-toolkit2-1.5.2/doc/requirements_cp38-1.5.2.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

安装rknn-toolkit2,位置在packages文件夹下面,请选择合适的版本。

pip install /home/yuzhou/rknn15/rknn-toolkit2-1.5.2/packages/rknn_toolkit2-1.5.2+b642f30c-cp38-cp38-linux_x86_64.whl

3、开发环境与板子连接

sudo apt-get install adb

使用USB-typeC线连接到板子的TypeC0接口,PC端识别到虚拟机中。
在开发环境中检查是否连接成功

adb devices

如果连接成功会返回板子的设备ID,如下:

List of devices attached
* daemon not running; starting now at tcp:5037
* daemon started successfully
75370ea69f64098d    device

三、onnx转rknn模型

在rknn-toolkit2工程文件夹中浏览至./examples/onnx/yolov5,将我们在yolov5工程中转换得到的best.onnx复制到该文件夹下,需要修改该文件夹下的test.py中的内容。

  • ONNX_MODEL:模型名;
  • RKNN_MODEL:转换后的rknn模型名;
  • IMG_PATH:推理的图片路径;
  • DATASET:需要打开txt文件修改,改为IMG_PATH的图片名
  • CLASSES:修改为自己数据集的类别

添加target_platform='rk3588'。

进入此目录,运行:

python test.py

如上图如此,说明没有问题,并且在该目录下会生成一个推理图片,以及转换好的rknn模型。

四、下载NPU工程

git clone https://github.com/rockchip-linux/rknpu2

将rknn_server和rknn库发送到板子上

adb push /home/yuzhou/rknn15/rknpu2-1.5.0/runtime/RK3588/Linux/rknn_server/aarch64/usr/bin/rknn_server /usr/bin/
adb push /home/yuzhou/rknn15/rknpu2-1.5.0/runtime/RK3588/Linux/librknn_api/aarch64/librknnrt.so /usr/bin/
adb push /home/yuzhou/rknn15/rknpu2-1.5.0/runtime/RK3588/Linux/librknn_api/aarch64/librknn_api.so /usr/bin/

 在板子上运行rknn_server服务

adb shell 
root@ok3588:/# chmod +x /usr/bin/rknn_server
root@ok3588:/# rknn_server &
[1] 6932
root@ok3588:/# start rknn server, version:1.5.0 (17e11b1 build: 2023-05-18 21:43:39)
I NPUTransfer: Starting NPU Transfer Server, Transfer version 2.1.0 (b5861e7@2020-11-23T11:50:51)

在开发环境中检测rknn_server是否运行成功

(base) yuzhou@yuzhou-HP:~$ adb shell
root@ok3588:/# pgrep rknn_server
6932

有返回进程id说明运行成功。

git clone https://github.com/rockchip-linux/rknpu2.git

五、部署在rk3588上

修改include文件中的头文件postprocess.h

#define OBJ_CLASS_NUM     80  #这里的数字修改为数据集的类的个数

修改model目录下的coco_80_labels_list.txt文件,改为自己的类并保存

car

将转换后的rknn文件放在model/RK3588目录下

在model目录下放入需要推理的图片

cd /home/yuzhou/rknn15/rknpu2-1.5.0/examples/rknn_yolov5_demo

编译,运行shell 

bash ./build-linux_RK3588.sh

成功后生成install目录,将文件推到我们的板子上面

adb push /home/yuzhou/rknn15/rknpu2-1.5.0/examples/rknn_yolov5_demo /mydatas/

与rk3588进行交互 

adb shell 

进入我们传入文件的目录下 

cd /mydatas/rknn_yolov5_demo_Linux

使用npu加速推理

./rknn_yolov5_demo ./model/RK3588/best5s.rknn ./model/6.jpg

 将生成的图片拉取到本地来

adb pull /mydatas/rknn_yolov5_demo_Linux/6out.jpg /home/yuzhou/rknn-toolkit2/examples/onnx/yolov5_rk3588_demo/test

参考文章

瑞芯微RK3588开发板:虚拟机yolov5模型转化、开发板上python脚本调用npu并部署 全流程_yolov5模型在rk3588-CSDN博客

yolov5训练pt模型并转换为rknn模型,部署在RK3588开发板上——从训练到部署全过程_yolov5 rknn-CSDN博客

瑞芯微rk3588部署yolov5模型实战_在rk3588上部署yolov5-CSDN博客

yolov5训练并生成rknn模型以及3588平台部署_yolov5 在rk3588上的部署-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/284979.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python Flask 将数据传递给前端

from flask import Flask, render_templateapp Flask(__name__)app.route("/index") def index():data {name: "张三","age": 18,}return render_template("index2.html", datadata)if __name__ __main__:app.run()<!DOCTYPE ht…

【python 装饰器 - 重试】做一个简易重试装饰器,如果函数执行错误则会自动重新执行,可设置重试次数,对爬虫比较友好

文章日期&#xff1a;2024.03.19 使用工具&#xff1a;Python 类型&#xff1a;装饰器 文章全程已做去敏处理&#xff01;&#xff01;&#xff01; 【需要做的可联系我】 AES解密处理&#xff08;直接解密即可&#xff09;&#xff08;crypto-js.js 标准算法&#xff09;&…

js教程(8)

一、事件流 1.概述 在JavaScript中&#xff0c;事件流描述的是事件在DOM结构中传播和被处理的顺序。事件流分为冒泡阶段和捕获阶段。 冒泡阶段&#xff08;Bubbling Phase&#xff09;&#xff1a;事件首先从最内层的元素开始向父级元素传播&#xff0c;一直传播到最外层的元素…

【MySQL】复合查询——基本单表查询、多表查询、自连接、子查询、使用from进行子查询、合并查询

文章目录 MySQL复合查询1. 基本单表查询2. 多表查询3. 自连接4. 子查询4.1 单行子查询4.2 多行子查询4.3 多列子查询4.4 使用from进行子查询 5. 合并查询5.1 union5.2 union all MySQL 复合查询 数据库的复合查询是指在一个查询中结合使用多个查询条件或查询子句&#xff0c;以…

Linux信号补充——信号发送和保存

三、信号的发送与保存 3.1信号的发送 ​ 必须有操作系统来保存信号&#xff0c;因为他是管理者&#xff1b; ​ 信号给进程的task_struct发送信号&#xff0c;在task_struct中维护了一个整数signal有0-31位&#xff0c;共32个bit位&#xff1b;对于信号的管理使用的是位图结…

面试算法-88-反转链表

题目 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[5,4,3,2,1] 解 class Solution {public ListNode reverseList(ListNode head) {if(head null || hea…

动态规划Dynamic Programming

上篇文章我们简单入门了动态规划&#xff08;一般都是简单的上楼梯&#xff0c;分析数据等问题&#xff09;点我跳转&#xff0c;今天给大家带来的是路径问题&#xff0c;相对于上一篇在一维中摸爬滚打&#xff0c;这次就要上升到二维解决问题&#xff0c;但都用的是动态规划思…

关于项目管理的一些思考

1. 概述 1.1 背景 本文是《项目管理知识体系指南&#xff08;PMBOK指南&#xff09;》的读书笔记&#xff0c;并结合软件开发项目过程的一些经验对项目管理进行总结。 1.2 读完本文你可以获得什么&#xff1f; PMBOK 学习笔记。 关于软件项目管理的一些思考和经验。 2. 什…

【网络基础】VRRP虚拟路由冗余协议介绍与配置

目录 一、VRRP的概述 1.1 VRRP的由来 1.2 作用 1.3 基本结构 1.4 状态机流程 1.5 设备类型 二、 实例演示 一、VRRP的概述 1.1 VRRP的由来 局域网中的用户终端通常采用配置一个默认网关的形式访问外部网络&#xff0c;如果此时默认网关设备发生故障&#xff0c;将中断…

【计算机网络实践】Cisco Packet Tracer局域网组网(FTP服务器通过交换机连接客户端)

本文为应对计算机网络第一次实验所写的预习报告 一、实验准备 一台装有Cisco Packet Tracer的PC机&#xff0c;一个大学生大脑。 二、了解FTP和Cisco Packet Tracer 具体内容可在百度搜索&#xff0c;在物理机上用FileZilla Server实现ftp可参看我前面的文章。Cisco Packet Tr…

Power BI ----SVG(圆环图)

圆环图助力矩阵图 定义度量值放置视觉对象 SVG是什么鬼&#xff0c;在现在的Web世界中越来越凸显这一标准的优势。关于SVG&#xff0c;我们只需要知道一点就好 ---- SVG 意为可缩放矢量图形&#xff08;Scalable Vector Graphics&#xff09;。它是使用 XML 格式定义的图像。 由…

C语言经典算法-8

文章目录 其他经典例题跳转链接41.基数排序法42.循序搜寻法&#xff08;使用卫兵&#xff09;43.二分搜寻法&#xff08;搜寻原则的代表&#xff09;44.插补搜寻法45.费氏搜寻法 其他经典例题跳转链接 C语言经典算法-1 1.汉若塔 2. 费式数列 3. 巴斯卡三角形 4. 三色棋 5. 老鼠…

【每周赠书活动第1期】Python编程 从入门到实践 第3版(图灵出品)

编辑推荐 适读人群 &#xff1a;本书适合对Python感兴趣的所有读者阅读。 编程入门就选蟒蛇书&#xff01; 【经典】Python入门经典&#xff0c;常居Amazon等编程类图书TOP榜 【畅销】热销全球&#xff0c;以12个语种发行&#xff0c;影响超过 250 万读者 【口碑】好评如潮…

Python文件读写操作

文件操作注意点 注意点&#xff1a; 1. for line in file --> 会将偏移量移到末尾 2. buffering1 --> 缓冲区中遇到换行就刷新&#xff0c;即向磁盘中写入 3. 读操作结束后&#xff0c;文本偏移量就会移动到读操作结束位置 """编写一个程序,循环不停的写入…

有哪些强大好用的AI表格数据处理工具或者 AI Excel工具?

在繁忙的工作和生活中&#xff0c;处理大量的表格数据往往令人感到头疼。面对一列列数字、一行行文字&#xff0c;我们需要花费大量的时间和精力去整理、核对。然而&#xff0c;随着科技的飞速发展&#xff0c;人工智能&#xff08;AI&#xff09;技术正逐渐改变这一现状。 如…

Mysql数据库:索引管理

目录 一、索引的概述 1、索引的概念 2、索引的作用 3、索引的副作用 4、创建索引的原则依据 5、索引优化 6、索引的分类 7、数据文件与索引文件 二、管理数据库索引 1、查询索引 2、创建索引 2.1 创建普通索引 2.2 创建唯一索引 2.3 创建主键索引 2.4 创建组合…

《边缘计算:连接未来的智慧之桥》

随着物联网、5G等技术的快速发展&#xff0c;边缘计算作为一种新兴的计算模式&#xff0c;正逐渐引起人们的广泛关注。边缘计算通过将数据处理和存储功能放置在距离数据产生源头更近的位置&#xff0c;实现了更快速、更可靠的数据处理和交换&#xff0c;为各行各业带来了前所未…

【项目设计】基于MVC的负载均衡式的在线OJ

项目代码&#xff08;可直接下载运行&#xff09; 一、项目的相关背景 学习编程的小伙伴&#xff0c;大家对力扣、牛客或其他在线编程的网站一定都不陌生&#xff0c;这些编程网站除了提供了在线编程&#xff0c;还有其他的一些功能。我们这个项目只是做出能够在线编程的功能。…

音视频开发之旅(78)- Docker使用和交互流程

目录 1.Docker是什么 2.DockerFile的使用 3.常用命令 4.Docker和Web服务的交互流程 5.资料 一、Docker是什么 Docker通过轻量级的容器化技术&#xff0c;使得应用程序及其依赖可以打包在一个可移植的容器中运行&#xff0c;确保应用在不同环境下的一致性和效率。 1.1 核心…

Affiliate Stores: 建立营销联盟商店的详细教程- US Domain Center主机

第一步&#xff1a;了解营销联盟商店 营销联盟商店是一种电子商务模式&#xff0c;您可以在其中通过推广其他企业的产品或服务来赚取佣金。您在自己的网站上展示其他企业的产品&#xff0c;并在买家购买时获得佣金。通过 WooCommerce 平台&#xff0c;您可以轻松创建一个营销联…