python、execl数据分析(数据描述)

 一 python

1.各函数

1.1python库的安装与导入

    #pip install os#pip install matplotlib#pip install seaborn#pip install scikit-learn#pip install scipy#修 改 工 作 目 录import osos.getcwd ()  # 查看当前工作环境os.chdir( 'F :\my course\database ')  # 修改工作环境os.getcwd ()#模 块 价 值import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as sns #统 计 绘 图from sklearn.preprocessing import StandardScalerfrom scipy.stats import normfrom scipy import stats #统 计from sklearn.impute import Simple Imputer #导 入 模 块

1.2python读入和检查数据

   # 读 入 分 析 数 据
2    df= pd.read_csv("customer1997 .csv")
3
4    # 检 查 数 据、 行 数、 列 数、 列 属 性 和 类 型
5    df.shape    # 行 数 和 列 出
6    df.info ()   # 每 个 属 性 的 行 数 和 类 型
7    df.columns  # 属 性 列 名 称
8    # 查 看 数 据 集 前5 行
9    df.head (5)

1.3数据属性的描述性分析

1    # 分 别 查 看RFM 的 描 述 统 计 量
2    # 方 法1 使 用describe() 输 出 数 值 属 性 的 行 数、 均 值、 标 准 差、 最 小 值、 Q1 ,Q2 ,Q3 ,最 大 值 3    df.describe ()
4    # 方 法2 使 用describe() 输 出 数 值 属 性 的 行 数、 均 值、 标 准 差、 最 小 值、 Q1 ,Q2 ,Q3 ,最 大 值 5    df[ 'Rec en cy '].describe ()   # 注 意 大 小 写 是 敏 感 的
6    # 方 法3 使 用 函 数 对 某 列 进 行 描 述 统 计
7    print( '对 客 户 的 到 店 次 数 进 行 描 述 统 计 ')
8    print( '最 小 值 是 ' , df[ 'Frequency '].min ())
9    print( '均 值 是 ' , df[ 'Frequency '].mean ())
10    print( ' 中 位 数 是 ' , df[ 'Frequency '].median ())
11    print( '第25 百 分 位 数 ' , df[ 'Frequency '].quantile(q=0.25))
12    print( '第75 百 分 位 数 ' , df[ 'Frequency '].quantile(q=0.75))
13    print( '最 大 值 是 ' , df[ 'Frequency '].max ())
14    print( '极 差 是 ' , df[ 'Frequency '].max ()-df[ 'Frequency '].min ())
15    print( '方 差 和 标 准 差 ' , df[ 'Frequency '].var(),df[ 'Frequency '].std())
16    print( '变 异 系 数 ' , df[ 'Frequency '].std()/df[ 'Frequency '].mean ())
17    print( '偏 度 和 峰 度 ' , df[ 'Frequency '].skew (),df[ 'Frequency '].kurt os is ())
18
19    # 数 值 型 属 性 统 计 分 布 图
20    # 绘 制 分 布 图 确 保 import seaborn as sns 被 执 行
21    df[ 'Monetary ']
22    sns.distplot(df[ 'Monetary '])
23    # 绘 制 盒 型 图
24    sns.boxplot(df[ 'Monetary '])
25    # 绘 制 核 密 度 图
26    sns.kdeplot(df[ 'Monetary '], shade=True , bw=.5, color="olive")

1.4分类属性的描述性分析

1    # 分 类 数 据 的 频 数 统 计
2    # 按 会 员 卡 等 级 统 计 人 数、 RFM 的 均 值、 描 述 统 计 量
3    # 设 置 数 据 对 象 的 分 组 属性 ,并 创 建 新 的 数 据 对 象
4    member card_summary=df.groupby( 'member_card ')
5    member card_summary [ 'customer_id '].count ()
6    member card_summary [ 'Rec en cy '].mean ()
7    member card_summary .mean ()
8    member card_summary [ 'Frequency '].describe ()
9    member card_summary [ 'Monetary '].describe ()

1.5两个分类属性的交叉统计分析

1    # 两 个 个 分 类 属 性 的 交 叉 统 计 分 析
2    # 按 会 员 卡 和 性 别 的 输 出 交 叉 表
3    pd.crosstab(df[ 'member_card '], df[ 'gender '])
4    #对 交 叉 结 果 进 行 归 一 化
5    pd.crosstab(df[ 'member_card '], df[ 'gender '],normalize=True)
6    #在 最 右 边 增 加 一 个 汇 总 列
7    pd.crosstab(df[ 'member_card '], df[ 'gender '],normalize=True ,margins=True)
8    # 对 每 列 进 行 归 一 化
9    pd.crosstab(df[ 'member_card '], df[ 'gender '],normalize= 'columns ')
10    # 绘 制 频 数 图/条 形 图
11    # 对 比 每 个 会 员 等 级 的 不 同 性 别 的 客 户 数 量
12    sns.countplot(y="member_card" ,hue= 'gender ' ,data=df)
13    # 两 个 分 类 属 性 增 加1个 数 值 属 性 的 盒 形 图
14    sns.boxplot(x="member_card" ,y="Frequency" ,hue="gender" ,data=df)

1.6两个数值属性的相关分析

    # 两 个 数 值 属 性
2    # 绘 制 相 关 矩 阵 和 热 力 图
3    # 输 出 数 值 型 属 性 的 两 两 相 关 系 数 表
4    df.corr ()
5    #绘 制 热 力 图
6    corr=df.corr ()
7    corr=(corr)
8    sns.heatmap(corr , xticklabels=corr.columns.values , yticklabels=corr.columns.values) 9    #绘 制2个 变 量 散 点 图 (scatterplot)
10    sns.scatterplot(x="Frequency" , y="Monetary" , data=df)
11    #绘 制 带 回 归 线 的 散 点 图 (lmplot)
12    sns.lmplot(x="Frequency" , y="Monetary" , data=df)
13    #在 散 点 图 上 增 加 一 个 分 类 属 性
14    sns.lmplot(x="Frequency" , y="Monetary" ,hue="gender" , data=df)
15    # 集 群 散 点 图(swarmplot)
16    sns.swarmplot(x=df[ 'gender '], y=df[ 'Monetary '])
17    sns.swarmplot(x=df[ 'gender '], y=df[ 'Frequency '])
18
19
20    #简 单 散 点 图  的 绘 图 语 法: sns .scatterplot( x=X对 应 变量 , y=Y对 应 变 量)
21    #分 组 散 点 图  的 绘 图 语 法: sns .scatterplot( x=X对 应 变量 , y=Y对 应 变量 , hue=分 组 依 据 的 类 别 变 量) 22    # 带 回 归 线 的 散 点 图  的 绘 图 语 法: sns .regplot( x=X对 应 变量 , y=Y对 应 变 量)
23    # 带 回 归 线 的 分 组 散 点 图  的 绘 图 语 法: sns .lmplot(x=X变 量 列名 , y=Y变 量 列名 , hue=分 组 依 据 的 类 别 变 量 列 名 , data=数 据 表)
24    #集 群 散 点 图(swarmplot) 的 绘 图 语 法: sns .swarmplot( x=X对 应 的 类 别 变量 , y=Y对 应 变 量)

1.7分类属性和数值属性的方差分析

1    # 1个 分 类 属 性 和1个 数 值 属 性
2    # 绘 制 盒 型 图
3    sns.boxplot(x=df[ 'member_card '],y=df[ 'Monetary '],data=df)
4    sns.boxplot(x=df[ 'gender '],y=df[ 'Monetary '],data=df)
5    # 单 因 素 方 差 分 析: 比 较 均 值 的 差 异 性
6    from scipy import stats
7    from statsmodels.formula.api import ol s
8    from statsmodels.stats.anova import anova_lm
9    from statsmodels.stats.multi comp import pairwise_tukeyhsd
10
11    df2=pd.con cat ([df[ 'gender '],df[ 'Monetary ']],axis=1)
12    anova_monetary= anova_lm(ol s( 'Monetary~C (gender) ' ,data=df2[[ 'gender ' , 'Monetary ']]).fit()) 13   print(anova_monetary)
14    ## 在0.05 的 显 著 水 平 下, 不 同 性 别 客 户 的 消 费 金 额 是 有 差 异 的
15    # 绘 制 不 同 组 的 核 密 度 图
16    # 使 用loc()取 出 不 同 组 的 数 据
17    p1=sns.kdeplot(df.loc[(df[ 'gender ']== 'M '), 'Rec en cy '], shade=True , color="r" ,label= 'M ') 18    p2=sns.kdeplot(df.loc[(df[ 'gender ']== 'F '), 'Rec en cy '], shade=True , color="b" ,label= 'F ') 19    plt.show ()
20    ##绘 制 叠 加 图 时 多 行 一 起 执 行

 1.8时间序列数据

1    # 带 有 时 间 属 性
2    # 读 入 分 析 数 据
3    import numpy a s np
4    import pandas a s pd
5    from datetime import datetime
6    import matplotlib.pylab a s plt
7    # 读 取 数 据, pd .read_csv 默 认 生 成DataFrame对 象, 需 将 其 转 换 成Series对 象
8    df = pd.read_csv( 'daily sales1997 .csv ' , encoding= 'utf-8 ' , index_col= 'date ')
9    df.info ()
10    df.index
11    df.index = pd.to_datetime(df.index)  # 将 字 符 串 索 引 转 换 成 时 间 索 引
12    ts = df[ 'sales ']  # 生 成pd .Series对 象
13    # 查 看 数 据 格 式
14    ts.head ()
15    ts.head ().index
16    #查 看 某 日 的 值 既 可 以 使 用 字 符 串 作 为 索 引, 又 可 以 直 接 使 用 时 间 对 象 作 为 索 引
17    ts[ '1997-01-05 ']
18    ts[datetime (1997 ,10 ,1)]
19    #切 片 操 作
20    ts[ '1997-5 ' : '1997-6 ']
21    #绘 制 时 间 序 列 图
22    ts.plot(fig size=(12 ,8))

2.例子

(1)

hotel.csv

def hotel_data():df = pd.read_csv('hotel.csv')# print(df)return dfdef get_shape():  # 获取行列值shape = hotel_data().shapeprint(shape)def get_info():info = hotel_data().infoprint(info)def get_column():column = hotel_data().columnsprint(column)def get_describe():  # 描述数据:数量,均值,最小值,最大值,25%,50%,75%describe = hotel_data().describe()print(describe)def get_box():  # 盒型图data = hotel_data()sns.boxplot(data)# sns.boxplot(data['nocheckin'], vert=False, showfliers=True)plt.show()def get_dis():  # 柱形图data = hotel_data()sns.displot(data)plt.show()def get_kdef():  # 分布图data = hotel_data()# sns.kdeplot(data, shade=True, bw=.5, color="olive")sns.kdeplot(data, fill=True, bw_method=.5, color="olive")plt.show()
hotel_data()结果:

get_describe()结果:

get_column()结果:

 

get_box()结果:

get_dis()结果:

get_kdef()结果:

(2)

 customer1997.csv

def get_summary():  # 分组频数统计data = customer_data()member_summary = data.groupby('member_card')data1 = data.groupby('member_card').count()print(data1)data2 = member_summary['customer_id'].count()  # 单个变量 每类会员卡人数print(data2)data3 = member_summary['Monetary'].mean()  # 双变量 会员卡 消费金额 每类会员卡平均print(data3)data4 = member_summary['Monetary'].describe()print(data4)

 结果

二 execl

1.调出“数据分析”按钮

文件--选项--加载项--转到--分析工具库

 

查看

 2.数据分析使用

选中数据,点击“数据分析”,选中“描述分析”

结果如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/285632.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据挖掘不是挖土豆,而是让数据开口说话!

文章目录 1、 缘起1.1 啤酒与尿布 - 发现商业价值1.2 数据挖掘 - 让数据说话 2、数据挖掘的难点3、数据挖掘的方法 Part 1 - 专业技术流3.1 网络数据采集 - 代理技术3.2 网络数据采集 - 爬虫浏览器3.3 网络数据采集 - 网络解锁器3.4 网络数据采集 - Web Scraper IDE 4、数据挖掘…

力扣100热题[哈希]:最长连续序列

原题:128. 最长连续序列 题解: 官方题解:. - 力扣(LeetCode)题解,最长连续序列 :哈希表 官方解题思路是先去重,然后判断模板长度的数值是否存在,存在就刷新&#xff0c…

python类属性和global变量区别

数据成员是指在类中定义的变量,即属性,根据定义位置,又可以分为类属性和实例属性。 类属性定义在方法前面。 定义类属性,非全局变量 class MyClass:#global cc 10 ## 类属性def my_function(self):global qwqw 9print(this …

Vue项目使用process.env关键字及Vue.config.js配置解决前端跨域问题

1.process.env 是Node.js 中的一个环境 1.打开命令行查看环境: 2.process.env与Vue CLI 项目 Vue Cli 有以下三种运行模式 development 模式用于 vue-cli-service serve test 模式用于 vue-cli-service test:unit production 模式用于 vue-cli-service build 和 vue-cli-se…

酷炫的粒子动态表白HTML源码

源码介绍 酷炫的粒子动态表白HTML源码,自己自定义文字,动态组合文字,进行表白,喜欢的朋友可以下载使用,很不错的表白HTML代码 下载地址 酷炫的粒子动态表白HTML源码

深入理解与实践AB测试:从理论到实战案例解析

一、引言 在互联网产品优化和运营策略制定中,AB测试(也称为分组测试或随机化对照实验)是一种科学且严谨的方法。它通过将用户群体随机分配至不同的实验组(通常是A组和B组),对比不同版本的产品或策略对关键…

封装一个可回车事件,不能输入配置项options没有的值的AutoComplete

要想AutoComplete支持回车事件,onKeyDown方法是用不了的,这一点在antd官方4.24.16中并没有提及。但是我们可以追踪到AutoComplete组件的源码,虽然并不能看很懂,但是可以看出组件是InternalSelectProps,RefSelectProps的…

【GPT概念04】仅解码器(only decode)模型的解码策略

一、说明 在我之前的博客中,我们研究了关于生成式预训练转换器的整个概述,以及一篇关于生成式预训练转换器(GPT)的博客——预训练、微调和不同的用例应用。现在让我们看看所有仅解码器模型的解码策略是什么。 二、解码策略 在之前…

小游戏-扫雷

扫雷大多人都不陌生,是一个益智类的小游戏,那么我们能否用c语言来编写呢, 我们先来分析一下扫雷的运行逻辑, 首先,用户在进来时需要我们给与一个菜单,以供用户选择, 然后我们来完善一下&#…

OceanMind海睿思入选中国信通院《2023高质量数字化转型技术解决方案集》

近日,由中国信息通信研究院“铸基计划”编制的《2023高质量数字化转型技术解决方案集(第一版)》正式发布。 中新赛克海睿思 凭借卓越的产品力以及广泛的行业实践,成功入选该方案集的数据分析行业技术解决方案。 为促进数字化转型…

Redis消息队列与thinkphp/queue操作

业务场景 场景一 用户完成注册后需要发送欢迎注册的问候邮件、同时后台要发送实时消息给用户对应的业务员有新的客户注册、最后将用户的注册数据通过接口推送到一个营销用的第三方平台。 遇到两个问题: 由于代码是串行方式,流程大致为:开…

视频号小店月入5w+,真的有那么赚钱吗?

我是电商珠珠 视频号小店是22年视频号团队发展的电商平台,距离现在也不过一年多的时间。我做电商已经有五年左右的时间了,天猫、快手、抖音小店都做过。在22年的时候,我开始琢磨起了视频号小店。 到现在我也拥有了视频号小店的运营团队&…

【C++从练气到飞升】06---重识类和对象

🎈个人主页:库库的里昂 ✨收录专栏:C从练气到飞升 🎉鸟欲高飞先振翅,人求上进先读书。 目录 ⛳️推荐 一、再谈构造函数 1. 构造函数体赋值 2. 初始化列表 每个成员变量在初始化列表中只能出现一次--初始化只能初始…

python爬虫学习第二天----类型转换

🎈🎈作者主页: 喔的嘛呀🎈🎈 🎈🎈所属专栏:python爬虫学习🎈🎈 ✨✨谢谢大家捧场,祝屏幕前的小伙伴们每天都有好运相伴左右,一定要天天…

leetcode LCR121.寻找目标值-二维数组

目录 问题描述示例具体思路思路一思路二 代码实现 问题描述 m*n 的二维数组 plants 记录了园林景观的植物排布情况,具有以下特性: 每行中,每棵植物的右侧相邻植物不矮于该植物; 每列中,每棵植物的下侧相邻植物不矮于该…

Hive SQL必刷练习题:留存率问题(*****)

留存率: 首次登录算作当天新增,第二天也登录了算作一日留存。可以理解为,在10月1号登陆了。在10月2号也登陆了,那这个人就可以算是在1号留存 今日留存率 (今日登录且明天也登录的用户数) / 今日登录的总…

一些恶意样本的流量分析学习

Trickbot Trickbot 是一种自 2016 年以来一直在感染受害者的信息窃取者和银行恶意软件。Trickbot通过恶意垃圾邮件(malspam)分发,也由其他恶意软件(如Emotet,IcedID或Ursnif)分发。 分析来自恶意垃圾邮件…

银行5G短消息应用架构设计

(一)RCS简介 1.1 RCS的提出与标准制定 RCS(Rich Communication Services & Suite,富媒体通信)是GSMA(Groupe Speciale Mobile Association,全球移动通信系统协会)在2008年提出的一种通讯方式,RCS融合了语音、消息…

Bytebase 2.14.1 - 分支 (Branching) 功能支持 Oracle

🚀 新功能 分支 (Branching) 功能支持 Oracle。为 SQL 编辑器添加了项目选择器。 新增 SQL 审核规范: 禁止混合 DDL、DML 语句。禁止对同一张表进行不同类型的 DML 变更 (UPDATE,INSERT,DELETE)。 🔔 重大变更 工作空间设置中的「数据访问…

【已解决】MySQL:常用的除法运算+精度处理+除数为0处理

目录 问题现象: 问题分析: 拓展: 1、除法运算: 拓展:MySQL中常用的几种除法运算 1、取整除法 2、浮点数除法 3、取余除法 4、向上取整除法 5、向下取整除法 2、运算结果的精度处理 1.1、浮点数 1.2、总位数 1.3、…