【数据结构】非线性结构——二叉树

在这里插入图片描述

文章目录

  • 前言
    • 1.树型结构
    • 1.1树的概念
    • 1.2树的特性
    • 1.3树的一些性质
    • 1.4树的一些表示形式
    • 1.5树的应用
      • 2.二叉树
    • 2.1 概念
    • 2.2 两种特殊的二叉树
    • 2.3 二叉树的性质
    • 2.4 二叉树的存储
    • 2.5 二叉树的基本操作

前言

前面我们都是学的线性结构的数据结构,接下来我们就需要来学习非线性的数据结构,我们先来学第一个非线性的数据结构——树。每一门学科都来自生活,从生活中学习,我们要学的树就是来自生活,这种数据结构就像我们大自然中的树倒立着一样,所以我们取名为树。

1.树型结构

1.1树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:
1.有一个特殊的结点,称为根结点,根结点没有前驱结点
2.除根结点外,其余结点被分成M(M > 0)个互不相交的集合T1、T2、…、Tm,其中每一个集合Ti (1 <= i <= m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
3.树是递归定义的。

在这里插入图片描述
注意:树形结构中,子树不能有交集,否则不具备树形结构。

1.2树的特性

1.子树是不相交的
2.除了根结点以外,每一个结点只有一个父节点。
3.一棵N个结点的树有N-1条边。

1.3树的一些性质

**结点的度:**一个结点含有子树的个数称为该结点的度;
**树的度:**一棵树中,所有结点度的最大值称为树的度;
叶子结点或终端结点:度为0的结点称为叶结点;
**双亲结点或父结点:**若一个结点含有子结点,则这个结点称为其子结点的父结点;
**孩子结点或子结点:**一个结点含有的子树的根结点称为该结点的子结点;
**根结点:**一棵树中,没有双亲结点的结点;
**结点的层次:**从根开始定义起,根为第1层,根的子结点为第2层,以此类推
**树的高度或深度:**树中结点的最大层次;
**非终端结点或分支结点:**度不为0的结点;
**兄弟结点:**具有相同父结点的结点互称为兄弟结点;
**堂兄弟结点:**双亲在同一层的结点互为堂兄弟;
**结点的祖先:**从根到该结点所经分支上的所有结点;
**子孙:**以某结点为根的子树中任一结点都称为该结点的子孙。
**森林:**由m(m>=0)棵互不相交的树组成的集合称为森林

1.4树的一些表示形式

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如:双亲表示法,孩子表示法、孩子双亲表示法、孩子兄弟表示法等等。我们这里就简单的了解其中最常用的孩子兄弟表示法。

class Node {int value;              
Node firstChild;        
// 树中存储的数据
// 第一个孩子引用
Node nextBrother;     // 下一个兄弟引用   
}

在这里插入图片描述

1.5树的应用

文件系统管理(目录和文件)
在这里插入图片描述

2.二叉树

2.1 概念

一棵二叉树是结点的一个有限集合,该集合:

  1. 或者为空
  2. 或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。
    在这里插入图片描述
    在这里插入图片描述
    从上图可以看出:
  3. 二叉树不存在度大于2的结点
  4. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
    注意:对于任意的二叉树都是由以下几种情况复合而成的:
    在这里插入图片描述

2.2 两种特殊的二叉树

  1. 满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。也就是说,如果一棵二叉树的层数为K,且结点总数是,则它就是满二叉树。
  2. 完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从0至n-1的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
    在这里插入图片描述

2.3 二叉树的性质

  1. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有(i>0)个结点
  2. 若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是(k>=0)
  3. 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1
  4. 具有n个结点的完全二叉树的深度k为上取整
  5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i
    的结点有:
    若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
    若2i+1<n,左孩子序号:2i+1,否则无左孩子
    若2i+2<n,右孩子序号:2i+2,否则无右孩子

2.4 二叉树的存储

二叉树的存储结构分为:顺序存储和类似于链表的链式存储。
二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式,具体如下:

 // 孩子表示法
class Node {int val;        // 数据域Node left;      // 左孩子的引用,常常代表左孩子为根的整棵左子树Node right;     // 右孩子的引用,常常代表右孩子为根的整棵右子树
}// 孩子双亲表示法
class Node {int val;        // 数据域Node left;      // 左孩子的引用,常常代表左孩子为根的整棵左子树Node right;     // 右孩子的引用,常常代表右孩子为根的整棵右子树Node parent;    // 当前节点的根节点
}

这里我们用孩子表示法来构建二叉树。

2.5 二叉树的基本操作

2.5.1枚举法来将树创建,这种创建方式一开始是比较容易理解的,等到我们对二叉树学习到一定的程度再去用其他方法创建二叉树,那样就比较轻松。
枚举法创建树:

public class BinaryTree {static class TreeNode {public char val;public TreeNode left;public TreeNode right;public TreeNode(char val) {this.val = val;}}public TreeNode careTree1() {TreeNode A = new TreeNode('A');TreeNode B = new TreeNode('B');TreeNode C = new TreeNode('C');TreeNode D = new TreeNode('D');TreeNode E = new TreeNode('E');TreeNode F = new TreeNode('F');A.left = B;A.right = D;B.left = C;D.left = E;D.right = F;return A;}
}

2.5.2 二叉树的遍历

  1. 前中后序遍历
    学习二叉树结构,最简单的方式就是遍历。所谓遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。访问结点所做的操作依赖于具体的应用问题(比如:打印节点内容、节点内容加1)。 遍历是二叉树上最重要的操作之一,是二叉树上进行其它运算之基础。
    在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱,如果按照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的。如果N代表根节点,L代表根节点的左子树,R代表根节点的右子树,则根据遍历根节点的先后次序有以下遍历方式:
    NLR:前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点—>根的左子树—>根的右子树。
    LNR:中序遍历(Inorder Traversal)——根的左子树—>根节点—>根的右子树。
    LRN:后序遍历(Postorder Traversal)——根的左子树—>根的右子树—>根节点。

下面分析前序递归遍历图解与遍历结果
在这里插入图片描述
代码实现:

public void preOrder(TreeNode root) {if(root == null) {return;}System.out.print(root.val+" ");preOrder(root.left);preOrder(root.right);}

下面分析中序递归遍历图解与遍历结果
在这里插入图片描述
代码实现:

 public void inOrder(TreeNode root) {if(root == null) {return;}inOrder(root.left);System.out.print(root.val+" ");inOrder(root.right);}

下面分析后序递归遍历图解与遍历结果
在这里插入图片描述
代码实现:

 public void postOrder(TreeNode root) {if(root == null) {return;}postOrder(root.left);postOrder(root.right);System.out.print(root.val+" ");}
  1. 层序遍历
    层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。
    2.5.3 二叉树的基本操作
    这些操作我们都采用子问题方式来解决
    什么叫子问题?子问题就是将问题细分成一个一个相同的小问题来解决。
    1.获取树中节点的个数
    左树的结点+右树的结点+根结点
int size(TreeNode root) {//子问题:左树结点的个数+右树结点的个数+根的个树if(root == null) {return 0;}return size(root.left) + size(root.right) + 1;}

2.获取叶子节点的个数
左树的叶子节点+右树的叶子节点 (叶子节点就是左右都没有结点称为叶子节点)

int getLeafNodeCount(TreeNode root) {if(root == null) {return 0;}//判断是否为叶子结点if(root.left == null && root.right == null) {return 1;}return getLeafNodeCount(root.left) + getLeafNodeCount(root.right);}

3.获取第K层节点的个数
每一次遍历左子树或右子树的时候k-1,当k==1时直接返回1.

 int getKLevelNodeCount(TreeNode root,int k) {if(root == null) {return 0;}//k==1时返回1if(k == 1) {return 1;}//遍历左子树和右子树return getKLevelNodeCount(root.left,k-1) + getKLevelNodeCount(root.right,k-1);}

4.获取二叉树的高度
比较左子树和右子树的最大路径然后+1

int getHeight(TreeNode root) {if(root == null) {return 0;}//比较左子树与右子树的最大值然后加1int getLeftMax = getHeight(root.left);int getRightMax = getHeight(root.right);return Math.max(getLeftMax,getRightMax) + 1;}int getHeight1(TreeNode root) {if(root == null) {return 0;}//比较左子树与右子树的最大值然后加1return Math.max(getHeight1(root.left),getHeight1(root.right)) + 1;}

5.检测值为value的元素是否存在
先判断根结点,然后遍历左子树和右子树

TreeNode find(TreeNode root, int val) {if(root == null) {return null;}//判断根结点是否为检测值if(root.val == val) {return root;}//然后遍历左子树,判断有没有和val值相同的,有则返回,没有则遍历右子树TreeNode leftVal = find(root.left,val);if(leftVal != null) {return leftVal;}//然后遍历右子树,判断有没有和val值相同的,有则返回TreeNode rightVal = find(root.right,val);if(rightVal != null) {return rightVal;}//说明左子树找不到右子树也找不到,最后返回nullreturn null;}

希望大家可以给我点点关注,点点赞,并且在评论区发表你们的想法和意见,我会认真看每一条评论,你们的支持就是我的最大鼓励。🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹🌹

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/286198.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

WPF---1.入门学习

学习来源 布局 wpf布局原则 一个窗口中只能包含一个元素 不应显示设置元素尺寸 不应使用坐标设置元素的位置 可以嵌套布局容器 StackPanel-->表单条件查找布局 DataGrid wpf布局容器 StackPanel: 水平或垂直排列元素&#xff0c;Orientation属性分别: Horizontal / Vertic…

力扣刷题之21.合并两个有序链表

仅做学习笔记之用。 题目&#xff1a; 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1&#xff1a; 输入&#xff1a;l1 [1,2,4], l2 [1,3,4] 输出&#xff1a;[1,1,2,3,4,4]示例 2&#xff1a; 输入&#xf…

R语言基础入门

1.保存或加载工作空间 改变工作目录——进行文件读写&#xff0c;默认去指定文件进行操作。&#xff08;使用R时&#xff0c;最好先设定工作目录&#xff08;setwd(),getwd()&#xff09;&#xff09; setwd(“工作文件路径”)&#xff1a;建立工作目录 getwd&#xff08;&…

陪诊小程序成品|陪诊系统功能|陪诊小程序研发功能和流程

近年来&#xff0c;随着人们健康意识的提升和医疗行业的不断发展&#xff0c;陪诊小程序在医疗领域中扮演着越来越重要的角色。那么&#xff0c;什么是陪诊小程序&#xff1f;它具有怎样的功能和流程呢&#xff1f;本文将为您详细解读。 陪诊小程序是一种通过手机应用程序进行…

考研数学|概率论复习攻略

考研数学中选择一个适合自己的老师是非常重要的&#xff0c;那么如何选择老师呢&#xff1f;了解老师的背景和教学风格是非常重要的。 不同的老师都有各自的特点和优势&#xff0c;你可以根据自己的学习需求和偏好来选择适合自己的老师。同时&#xff0c;也建议试听一些课程&a…

Douyin视频详情数据API接口(视频详情,评论)

抖音官方并没有直接提供公开的视频详情数据采集API接口给普通用户或第三方开发者。抖音的数据采集通常受到严格的限制&#xff0c;以保护用户隐私和平台安全。 请求示例&#xff0c;API接口接入Anzexi58 如果您需要获取抖音视频详情数据&#xff0c;包括评论、点赞等&#xff…

C语言 | qsort()函数使用

目录&#xff1a; 1.qsort介绍 2.使⽤qsort函数 排序 整型数据 3.使⽤qsort函数 排序 结构体数据 4. qsort函数的模拟实现冒泡排序 qsort()函数 是一个 C语言编译器函数库自带的排序函数&#xff0c; 它可以对指定数组&#xff08;包括字符串&#xff0c;二维数组&#x…

关于RPC

初识RPC RPC VS REST HTTP Dubbo Dubbo 特性&#xff1a; 基于接口动态代理的远程方法调用 Dubbo对开发者屏蔽了底层的调用细节&#xff0c;在实际代码中调用远程服务就像调用一个本地接口类一样方便。这个功能和Fegin很类似&#xff0c;但是Dubbo用起来比Fegin还要简单很多&a…

西安交易所开发:打造区块链交易系统的DApp开发

随着区块链技术的逐步成熟和普及&#xff0c;数字资产交易逐渐走向了去中心化的方向。西安交易所作为一种新型的数字资产交易平台&#xff0c;具有更高的安全性、透明度和可信度&#xff0c;受到了越来越多投资者的青睐。本文将探讨在西安交易所开发中如何打造区块链交易系统的…

web后端Servlet实现文件上传(最后用于图书类)

老规矩哦&#xff0c;别抄哦兄弟们&#xff01;不包含基本的ajax基本封装哦&#xff0c;要是有需要&#xff0c;可以私信找我&#xff0c;我发给你&#xff0c;你放在包里面&#xff0c;二次直接调用。 前端html代码&#xff1a;&#xff08;在这个js中实现了点击选择文件后&a…

服务器被挖矿了怎么办,实战清退

当我们发现服务器资源大量被占用的时候&#xff0c;疑似中招了怎么办 第一时间重启服务是不行的&#xff0c;这些挖矿木马一定是会伴随着你的重启而自动重启&#xff0c;一定时间内重新霸占你的服务器资源 第一步检查高占用进程 top -c ps -ef 要注意这里%CPU&#xff0c;如果…

Day75:WEB攻防-验证码安全篇接口滥用识别插件复用绕过宏命令填入滑块类

目录 图片验证码-识别插件-登录爆破&接口枚举 登录爆破 接口枚举 图片验证码-重复使用-某APP短信接口滥用 滑块验证码-宏命令-某Token&Sign&滑块案例 知识点&#xff1a; 1、验证码简单机制-验证码过于简单可爆破 2、验证码重复使用-验证码验证机制可绕过 3、…

使用ChatGPT的场景之gpt写研究报告,如何ChatGPT写研究报告

推荐写研究报告使用智能站&#xff1a; dayfire.cn/ 1. 确定研究主题 明确主题&#xff1a;在开始之前&#xff0c;你需要有一个清晰的研究主题。这将帮助AI更好地理解你的需求…

【网络爬虫】(1) 网络请求,urllib库介绍

各位同学好&#xff0c;今天开始和各位分享一下python网络爬虫技巧&#xff0c;从基本的函数开始&#xff0c;到项目实战。那我们开始吧。 1. 基本概念 这里简单介绍一下后续学习中需要掌握的概念。 &#xff08;1&#xff09;http 和 https 协议。http是超文本传输&#xf…

STM32之HAL开发——Keil调试工具介绍

Debug介绍 在Keil工具中有许多常用的小工具&#xff0c;下面将会依次为大家介绍每个工具的用途。 命令行窗口 在窗口内可以输入一些指令&#xff0c;来进行断点设置以及删除&#xff0c;一般不常用 反汇编窗口 可以查看当前C代码的汇编指令 标志窗口 寄存器窗口 可以用来查看C…

Knative 助力 XTransfer 加速应用云原生 Serverless 化

作者&#xff1a;元毅 公司介绍 XTransfer 是一站式外贸企业跨境金融和风控服务公司&#xff0c;致力于帮助中小微企业大幅降低全球展业的门槛和成本&#xff0c;提升全球竞争力。公司连续7年专注 B2B 外贸金融服务&#xff0c;已成为中国 B2B 外贸金融第一平台&#xff0c;目…

FFmpeg+mediamtx 实现将本地摄像头推送成RTSP流

文章目录 概要推流过程实现过程安装FFmpeg安装Mediamtx 启动推流 概要 FFmpegmediamtx实现将本地摄像头推送成RTSP流 FFmpeg 版本号为&#xff1a;N-114298-g97d2990ea6-20240321 mediamtx 版本号为&#xff1a;v1.6.0 推流过程 摄像头数据&#xff0c;经过ffmpeg的推流代码…

华为OD机22道试题

华为OD机试题 2.查找小朋友的好朋友位置 在学校中&#xff0c;N 个小朋友站成一队&#xff0c;第 i 个小朋友的身高为 height[i]&#xff0c;第 i 个小朋友可以看到第一个比自己身高更高的小朋友j&#xff0c;那么 j 是 i 的好朋友 (要求&#xff1a;j>i) 。 请重新生成一个…

图解Kafka架构学习笔记(二)

kafka的存储机制 https://segmentfault.com/a/1190000021824942 https://www.lin2j.tech/md/middleware/kafka/Kafka%E7%B3%BB%E5%88%97%E4%B8%83%E5%AD%98%E5%82%A8%E6%9C%BA%E5%88%B6.html https://tech.meituan.com/2015/01/13/kafka-fs-design-theory.html https://feiz…

服务端高并发分布式结构

前言 本文以⼀个 “电子商务” 应用为例&#xff0c;介绍从⼀百个到千万级并发情况下服务端的架构的演进过程&#xff0c;同时列举出每个演进阶段会遇到的相关技术&#xff0c;让大家对架构的演进有⼀个整体的认知&#xff0c;方便⼤家对后续知识做深⼊学习时有⼀定的整体视野…